layers.py 6.39 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
r"""
nn modules to replace Megatron's native ones
"""
import math
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F

from fmoe.transformer import FMoETransformerMLP
from .balance import reset_gate_hook
from .balance import generate_megatron_gate_hook


class _FakeMegatronMLP(nn.Module):
    r"""
    A fake mlp without model parallelism for correctness testing
    """

    def __init__(self, args, _):
        super().__init__()
        self.fc1 = nn.Linear(args.hidden_size, args.hidden_hidden_size)
        self.fc2 = nn.Linear(args.hidden_hidden_size, args.hidden_size)

    def forward(self, x):
        r"""
        Directly use GeLU
        """
        x = self.fc1(x)
        x = F.gelu(x)
        x = self.fc2(x)
        return x, torch.zeros_like(x)


def _megatron_init_method(self, rng, sigma):
    r"""
    Init method based on N(0, sigma).
    Copied from Megatron-LM
    """
    device = self.weight.device
    dtype = self.weight.dtype
    weight = rng.normal(loc=0.0, scale=sigma, size=tuple(self.weight.size()))
    self.weight.data = torch.from_numpy(weight).to(dtype=dtype, device=device)

    if self.bias is not None:
        # Always initialize bias to zero.
        with torch.no_grad():
            self.bias.zero_()


def _random_init_weight(self, rng):
    r"""
    Copied from torch.nn.init.kaiming_uniform_
    """
    fan = nn.init._calculate_correct_fan(self.weight[0], "fan_in")
    gain = nn.init.calculate_gain("leaky_relu", math.sqrt(5))
    std = gain / math.sqrt(fan)
    bound = math.sqrt(3.0) * std
    device = self.weight.device
    dtype = self.weight.dtype
    weight = rng.uniform(-bound, bound, size=tuple(self.weight.size()))
    self.weight.data = torch.from_numpy(weight).to(dtype=dtype, device=device)

    if self.bias is not None:
        fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[0])
        bound = 1 / math.sqrt(fan_in)
        bias = rng.uniform(-bound, bound, size=tuple(self.bias.size()))
        self.bias.data = torch.from_numpy(bias).to(dtype=dtype, device=device)


class MegatronMLP(FMoETransformerMLP):
    r"""
    Make the FMoETransformerMLP layer that distributes experts across
    communication group `group` to replace the original MLP layer in Megatron.
    """

Rick Ho's avatar
Rick Ho committed
77
    def __init__(self, args, layer_idx, gate=None):
Rick Ho's avatar
Rick Ho committed
78
79
        if not args.distributed_experts:
            world_size = 1
Rick Ho's avatar
Rick Ho committed
80
            moe_group = None
Rick Ho's avatar
Rick Ho committed
81
        else:
Rick Ho's avatar
Rick Ho committed
82
83
84
85
            world_size = args.data_parallel_size
            from megatron.mpu import get_data_parallel_group
            moe_group = get_data_parallel_group()

86
        if not args.balance_strategy or args.balance_strategy == "naive":
Rick Ho's avatar
Rick Ho committed
87
88
89
90
91
            from fmoe.gates import NaiveGate
            gate = NaiveGate
        elif args.balance_strategy == "noisy":
            from fmoe.gates import NoisyGate
            gate = NoisyGate
92
93
94
95
96
97
        elif args.balance_strategy == "gshard":
            from fmoe.gates import GShardGate
            gate = GShardGate
        elif args.balance_strategy == "switch":
            from fmoe.gates import SwitchGate
            gate = SwitchGate
Rick Ho's avatar
Rick Ho committed
98
        elif gate is None:
Rick Ho's avatar
Rick Ho committed
99
            assert False, "Undefined balance strategy {}" % (args.balance_strategy)
Rick Ho's avatar
Rick Ho committed
100

Rick Ho's avatar
Rick Ho committed
101
102
103
104
105
106
        super().__init__(
            args.num_experts,
            top_k=args.top_k,
            d_model=args.hidden_size,
            d_hidden=args.hidden_hidden_size,
            world_size=world_size,
Rick Ho's avatar
Rick Ho committed
107
            moe_group=moe_group,
Rick Ho's avatar
Rick Ho committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
            expert_dp_comm="none" if args.distributed_experts else "dp",
            gate_hook=generate_megatron_gate_hook(
                layer_idx, args.num_experts * world_size
            ),
            gate=gate,
        )
        self.hidden_size = args.hidden_size
        if args.distributed_experts:
            self.rank = args.rank
        else:
            self.rank = 0
        self.sigma = args.init_method_std
        self.num_layers = args.num_layers
        self.reset_parameters()

    def reset_parameters(self):
        r"""
        Initialize the weight as linear layers.
        As megatron is using fixed random seed for some nasty stuff, an
        additional numpy rng is used.
        """
        rng = np.random.default_rng(np.random.randint(2048) + self.rank)
        _megatron_init_method(self.experts.htoh4, rng, self.sigma)
        std = self.sigma / math.sqrt(2.0 * self.num_layers)
        _megatron_init_method(self.experts.h4toh, rng, std)

    def forward(self, inp):
Rick Ho's avatar
Rick Ho committed
135
136
137
        from megatron import mpu
        x = super().forward(inp)
        x = mpu.reduce_from_tensor_model_parallel_region(x)
Rick Ho's avatar
Rick Ho committed
138
        return (
Rick Ho's avatar
Rick Ho committed
139
            x,
Rick Ho's avatar
Rick Ho committed
140
141
142
143
144
145
146
147
148
149
            torch.zeros(self.hidden_size, dtype=inp.dtype, device=inp.device),
        )


def fmoefy(
    model,
    num_experts=None,
    distributed_experts=True,
    hidden_hidden_size=None,
    top_k=None,
Rick Ho's avatar
Rick Ho committed
150
    gate=None,
Rick Ho's avatar
Rick Ho committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
):
    r"""
    Replace MLP layers in a transformer-based model in Megatron by MoE.
    * `model` should be a standard Megatron model that has
    `model.language_model.transformer.layers` as transformer layers, which is an
    array of transformer blocks that contain an `mlp` member.
    * `distributed_expert` is set to True if different experts are located in
    different workers. Otherwise, the experts on the workers are identical, and
    they are trained in data-parallel mode. This can be useful when testing on
    small models that do not require high training throughput or large parameter
    capacity.
    Note that pipeline parallel is not supported yet. When distributed experts
    are enabled, their communicator should be Megatron's
    tensor_model_parall_comm x data_parallel_comm, which is not created.
    """
    from megatron import get_args

    args = get_args()
Rick Ho's avatar
Rick Ho committed
169
170
171
172
173

    # Set distributed_experts to None to use default setting in args
    if distributed_experts is not None:
        args.distributed_experts = distributed_experts

Rick Ho's avatar
Rick Ho committed
174
175
176
177
178
179
180
181
182
183
184
    if num_experts is not None:
        args.num_experts = num_experts
    assert (
        "num_experts" in args
    ), "num_experts should be specified in arguments or fmoefy function"

    if top_k is not None:
        args.top_k = top_k
    elif not hasattr(args, "top_k"):
        args.top_k = 2

Rick Ho's avatar
Rick Ho committed
185
    args.hidden_hidden_size = hidden_hidden_size
Rick Ho's avatar
Rick Ho committed
186
187

    for idx, l in enumerate(model.language_model.transformer.layers):
Rick Ho's avatar
Rick Ho committed
188
        l.mlp = MegatronMLP(args, idx, gate=gate)
Rick Ho's avatar
Rick Ho committed
189
190
191
192
193
194

    # initialize gate hook
    num_layers = len(model.language_model.transformer.layers)
    reset_gate_hook(num_layers)

    return model