text8_gpu.sh 2.46 KB
Newer Older
Zhilin Yang's avatar
init  
Zhilin Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/bin/bash

# Data
DATA_ROOT=../data/text8/

# Model
N_LAYER=24
D_MODEL=1024
D_EMBED=1024
N_HEAD=8
D_HEAD=128
D_INNER=3072

# Training
TGT_LEN=256
MEM_LEN=256

BSZ=16
NUM_CORE=2

# Testing
TEST_TGT_LEN=128
TEST_MEM_LEN=3800
TEST_CLAMP_LEN=1000

TEST_BSZ=8
TEST_NUM_CORE=2

if [[ $1 == 'train_data' ]]; then
    python data_utils.py \
      --data_dir=${DATA_ROOT}/ \
      --dataset=text8 \
      --tgt_len=${TGT_LEN} \
      --per_host_train_bsz=${BSZ} \
      --per_host_valid_bsz=${BSZ} \
      --num_passes=1 \
      --use_tpu=False \
      ${@:2}
elif [[ $1 == 'test_data' ]]; then
    python data_utils.py \
      --data_dir=${DATA_ROOT}/ \
      --dataset=text8 \
      --tgt_len=${TEST_TGT_LEN} \
      --per_host_test_bsz=${TEST_BSZ} \
      --num_passes=1 \
      --use_tpu=False \
      ${@:2}
elif [[ $1 == 'train' ]]; then
    echo 'Run training...'
    python train_gpu.py \
        --data_dir=${DATA_ROOT}/tfrecords \
        --record_info_dir=${DATA_ROOT}/tfrecords/ \
        --corpus_info_path=${DATA_ROOT}/corpus-info.json \
        --model_dir=EXP-text8 \
        --n_layer=${N_LAYER} \
        --d_model=${D_MODEL} \
        --d_embed=${D_EMBED} \
        --n_head=${N_HEAD} \
        --d_head=${D_HEAD} \
        --d_inner=${D_INNER} \
        --dropout=0.1 \
        --dropatt=0.0 \
        --learning_rate=0.00025 \
        --warmup_steps=0 \
        --train_steps=400000 \
        --tgt_len=${TGT_LEN} \
        --mem_len=${MEM_LEN} \
        --train_batch_size=${BSZ} \
        --num_core_per_host=${NUM_CORE} \
        --iterations=200 \
        --save_steps=200 \
        --do_train=True \
        --do_eval=False \
        ${@:2}
elif [[ $1 == 'eval' ]]; then
    echo 'Run evaluation...'
    python train_gpu.py \
        --data_dir=${DATA_ROOT}/tfrecords \
        --record_info_dir=${DATA_ROOT}/tfrecords/ \
        --corpus_info_path=${DATA_ROOT}/corpus-info.json \
        --model_dir=EXP-text8 \
        --n_layer=${N_LAYER} \
        --d_model=${D_MODEL} \
        --d_embed=${D_EMBED} \
        --n_head=${N_HEAD} \
        --d_head=${D_HEAD} \
        --d_inner=${D_INNER} \
        --dropout=0.0 \
        --dropatt=0.0 \
        --tgt_len=${TEST_TGT_LEN} \
        --mem_len=${TEST_MEM_LEN} \
        --clamp_len=${TEST_CLAMP_LEN} \
        --same_length=True \
        --eval_batch_size=${TEST_BSZ} \
        --num_core_per_host=${TEST_NUM_CORE} \
        --do_train=False \
        --do_eval=True \
        --eval_split=test \
        ${@:2}
else
    echo 'unknown argment 1'
fi