proj_adaptive_softmax.py 5.56 KB
Newer Older
Zhilin Yang's avatar
init  
Zhilin Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
from collections import defaultdict

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F

CUDA_MAJOR = int(torch.version.cuda.split('.')[0])
CUDA_MINOR = int(torch.version.cuda.split('.')[1])

class ProjectedAdaptiveLogSoftmax(nn.Module):
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
                 keep_order=False):
        super(ProjectedAdaptiveLogSoftmax, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed
        self.d_proj = d_proj

        self.cutoffs = cutoffs + [n_token]
        self.cutoff_ends = [0] + self.cutoffs
        self.div_val = div_val

        self.shortlist_size = self.cutoffs[0]
        self.n_clusters = len(self.cutoffs) - 1
        self.head_size = self.shortlist_size + self.n_clusters

        if self.n_clusters > 0:
            self.cluster_weight = nn.Parameter(torch.zeros(self.n_clusters, self.d_embed))
            self.cluster_bias = nn.Parameter(torch.zeros(self.n_clusters))

        self.out_layers = nn.ModuleList()
        self.out_projs = nn.ParameterList()

        if div_val == 1:
            for i in range(len(self.cutoffs)):
                if d_proj != d_embed:
                    self.out_projs.append(
                        nn.Parameter(torch.Tensor(d_proj, d_embed))
                    )
                else:
                    self.out_projs.append(None)

            self.out_layers.append(nn.Linear(d_embed, n_token))
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)

                self.out_projs.append(
                    nn.Parameter(torch.Tensor(d_proj, d_emb_i))
                )

                self.out_layers.append(nn.Linear(d_emb_i, r_idx-l_idx))

        self.keep_order = keep_order

    def _compute_logit(self, hidden, weight, bias, proj):
        if proj is None:
            logit = F.linear(hidden, weight, bias=bias)
        else:
            # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
            proj_hid = F.linear(hidden, proj.t().contiguous())
            logit = F.linear(proj_hid, weight, bias=bias)
            # else:
            #     logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
            #     if bias is not None:
            #         logit = logit + bias

        return logit

    def forward(self, hidden, target, keep_order=False):
        '''
            hidden :: [len*bsz x d_proj]
            target :: [len*bsz]
        '''

        if hidden.size(0) != target.size(0):
            raise RuntimeError('Input and target should have the same size '
                               'in the batch dimension.')

        if self.n_clusters == 0:
            logit = self._compute_logit(hidden, self.out_layers[0].weight,
                                        self.out_layers[0].bias, self.out_projs[0])
            nll = -F.log_softmax(logit, dim=-1) \
                    .gather(1, target.unsqueeze(1)).squeeze(1)
        else:
            # construct weights and biases
            weights, biases = [], []
            for i in range(len(self.cutoffs)):
                if self.div_val == 1:
                    l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
                    weight_i = self.out_layers[0].weight[l_idx:r_idx]
                    bias_i = self.out_layers[0].bias[l_idx:r_idx]
                else:
                    weight_i = self.out_layers[i].weight
                    bias_i = self.out_layers[i].bias

                if i == 0:
                    weight_i = torch.cat(
                        [weight_i, self.cluster_weight], dim=0)
                    bias_i = torch.cat(
                        [bias_i, self.cluster_bias], dim=0)

                weights.append(weight_i)
                biases.append(bias_i)

            head_weight, head_bias, head_proj = weights[0], biases[0], self.out_projs[0]

            head_logit = self._compute_logit(hidden, head_weight, head_bias, head_proj)
            head_logprob = F.log_softmax(head_logit, dim=1)

            nll = torch.zeros_like(target,
                    dtype=hidden.dtype, device=hidden.device)

            offset = 0
            cutoff_values = [0] + self.cutoffs
            for i in range(len(cutoff_values) - 1):
                l_idx, r_idx = cutoff_values[i], cutoff_values[i + 1]

                mask_i = (target >= l_idx) & (target < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                target_i = target.index_select(0, indices_i) - l_idx
                head_logprob_i = head_logprob.index_select(0, indices_i)

                if i == 0:
                    logprob_i = head_logprob_i.gather(1, target_i[:,None]).squeeze(1)
                else:
                    weight_i, bias_i, proj_i = weights[i], biases[i], self.out_projs[i]

                    hidden_i = hidden.index_select(0, indices_i)

                    tail_logit_i = self._compute_logit(hidden_i, weight_i, bias_i, proj_i)
                    tail_logprob_i = F.log_softmax(tail_logit_i, dim=1)

                    logprob_i = head_logprob_i[:, -i] \
                              + tail_logprob_i.gather(1, target_i[:,None]).squeeze(1)

                if (hasattr(self, 'keep_order') and self.keep_order) or keep_order:
                    nll.index_copy_(0, indices_i, -logprob_i)
                else:
                    nll[offset:offset+logprob_i.size(0)].copy_(-logprob_i)

                offset += logprob_i.size(0)

        return nll