mem_transformer.py 47 KB
Newer Older
Zhilin Yang's avatar
init  
Zhilin Yang committed
1
2
3
4
5
6
7
8
9
import sys
import math
import functools

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
Jiezhong Qiu's avatar
Jiezhong Qiu committed
10
#  import torch_sparse
Zhilin Yang's avatar
init  
Zhilin Yang committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

sys.path.append('utils')
from proj_adaptive_softmax import ProjectedAdaptiveLogSoftmax
from log_uniform_sampler import LogUniformSampler, sample_logits

class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:]

Jiezhong Qiu's avatar
Jiezhong Qiu committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
class MoEPositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, top_k=64):
        super(MoEPositionwiseFF, self).__init__()
        print("MoEPositionwiseFF")

        self.top_k = top_k
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.gate = nn.Linear(d_model, d_inner)

        self.W2 = nn.Parameter(torch.Tensor(d_inner, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        ratio = top_k / d_inner
        self.dropout_middle = nn.Dropout(dropout * ratio)
        self.dropout_final = nn.Dropout(dropout)

        self.reset_parameter()

    def reset_parameter(self):
        temp_Linear = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp_Linear.weight.data.transpose(0, 1)
        self.b2.data = temp_Linear.bias.data

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

        gate = self.gate(inp)
        gate_top_k_val, gate_top_k_idx = torch.topk(gate, k=self.top_k, dim=-1, largest=True, sorted=False) # [.. x top_k]
        relu_out = F.relu(gate_top_k_val)

        x = self.dropout_middle(relu_out)

        W2_select = self.W2[gate_top_k_idx] # [.. x top_k x d_model]
        core_out = torch.einsum('ijk,ijkd->ijd', (x, W2_select)) + self.b2 # [.. x d_model]
        core_out = self.dropout_final(core_out)

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output
        #  return output, relu_out.detach()

Jiezhong Qiu's avatar
Jiezhong Qiu committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def my_topk(x, k, inplace=True):
    y = x if inplace else x.clone()
    top1_val, top1_idx = torch.max(y, dim=-1)
    top1_val = top1_val.unsqueeze(-1)
    top1_idx = top1_idx.unsqueeze(-1)
    if k == 1:
        return top1_val, top1_idx
    y.scatter_(-1, top1_idx, value=float('-inf'))
    top2_val, top2_idx = torch.max(y, dim=-1)
    top2_val = top2_val.unsqueeze(-1)
    top2_idx = top2_idx.unsqueeze(-1)

    top_val = torch.cat((top1_val, top2_val), dim=-1)
    top_idx = torch.cat((top1_idx, top2_idx), dim=-1)
    return top_val, top_idx

Jiezhong Qiu's avatar
Jiezhong Qiu committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
class MultiHeadHierarchicalMoEPositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, n_block=16, top_block=2):
        super(MultiHeadHierarchicalMoEPositionwiseFF, self).__init__()
        print("MultiHeadHierarchicalMoEPositionwiseFF")

        assert d_inner % n_block == 0
        assert top_block in [1, 2]
        self.top_block = top_block
        self.n_block = n_block

        d_block = d_inner // n_block
        self.d_block = d_block
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.block_net_W = nn.Parameter(torch.Tensor(d_model, top_block, n_block))
        self.block_net_b = nn.Parameter(torch.Tensor(top_block, n_block))

        self.W1 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b1 = nn.Parameter(torch.Tensor(n_block, d_block))

        self.W2 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        ratio = top_block / n_block
        self.dropout_middle = nn.Dropout(dropout * ratio)
        self.dropout_final = nn.Dropout(dropout)

        #  self.scale = 1 / (d_model ** 0.5)
        self.reset_parameter()

    def reset_parameter(self):
        temp = nn.Linear(self.d_model, self.d_inner)
        self.W1.data = temp.weight.data.view(self.n_block, self.d_block, self.d_model)
        self.b1.data = temp.bias.data.view(self.n_block, self.d_block)
        temp = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp.weight.data.transpose(0, 1).contiguous().view(self.n_block, self.d_block, self.d_model)
        self.b2.data = temp.bias.data
        for i in range(self.top_block):
            temp = nn.Linear(self.d_model, self.n_block)
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
147
148
            self.block_net_W.data[:, i] = temp.weight.data.transpose(0, 1).contiguous()
            self.block_net_b.data[i] = temp.bias.data
Jiezhong Qiu's avatar
Jiezhong Qiu committed
149
150
151
152
153
154
155
156

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

        block = torch.einsum("ibd,dan->iban", (inp, self.block_net_W)) + self.block_net_b # [.. x top_block x n_block ]

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
157
158
        block_val, block_idx = my_topk(block, k=1, inplace=True)
        # block_val, block_idx = torch.topk(block, k=1, dim=-1, largest=True, sorted=False) # [.. x top_k x 1]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        block_val = block_val.squeeze(-1)
        block_idx = block_idx.squeeze(-1)

        gate = F.softmax(block_val, dim=-1)

        W1_block = self.W1[block_idx] # [.. x top_k x d_block x d_model]
        b1_block = self.b1[block_idx] # [.. x top_k x d_block]

        x = torch.einsum('ibd,ibnhd->ibnh', (inp, W1_block)) + b1_block # [.. x top_k x d_block]
        #  x = x + block_val.unsqueeze(-1) # somehow like residual

        x = x * gate.unsqueeze(-1)

        relu_out = F.relu(x)
        relu_out = self.dropout_middle(relu_out)

        W2_block = self.W2[block_idx] # [.. x top_k x d_model]

        core_out = torch.einsum('ibnh,ibnhd->ibd', (x, W2_block)) + self.b2 # [.. x d_model]
        core_out = self.dropout_final(core_out)

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output


Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
187
class HierarchicalMoEPositionwiseFF(nn.Module):
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
188
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, n_block=16, top_block=2):
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
189
190
191
        super(HierarchicalMoEPositionwiseFF, self).__init__()
        print("HierarchicalMoEPositionwiseFF")

Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
192
        assert d_inner % n_block == 0
Jiezhong Qiu's avatar
Jiezhong Qiu committed
193
        assert top_block in [1, 2]
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
194
195
196
197
198
199
200
201
202
        self.top_block = top_block
        self.n_block = n_block

        d_block = d_inner // n_block
        self.d_block = d_block
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
203
        self.block_net = nn.Linear(d_model, n_block, bias=True)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

        self.W1 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b1 = nn.Parameter(torch.Tensor(n_block, d_block))

        self.W2 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        ratio = top_block / n_block
        self.dropout_middle = nn.Dropout(dropout * ratio)
        self.dropout_final = nn.Dropout(dropout)

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
219
        #  self.scale = 1 / (d_model ** 0.5)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        self.reset_parameter()

    def reset_parameter(self):
        temp = nn.Linear(self.d_model, self.d_inner)
        self.W1.data = temp.weight.data.view(self.n_block, self.d_block, self.d_model)
        self.b1.data = temp.bias.data.view(self.n_block, self.d_block)
        temp = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp.weight.data.transpose(0, 1).contiguous().view(self.n_block, self.d_block, self.d_model)
        self.b2.data = temp.bias.data

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

        block = self.block_net(inp)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
236

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
237
238
        #  block_val, block_idx = my_topk(block, k=self.top_block)
        block_val, block_idx = torch.topk(block, k=self.top_block, dim=-1, largest=True, sorted=False) # [.. x top_k]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
239

Jiezhong Qiu's avatar
Jiezhong Qiu committed
240
        gate = F.softmax(block_val, dim=-1)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
241
242
243
244

        W1_block = self.W1[block_idx] # [.. x top_k x d_block x d_model]
        b1_block = self.b1[block_idx] # [.. x top_k x d_block]

Jiezhong Qiu's avatar
Jiezhong Qiu committed
245
        x = torch.einsum('ibd,ibnhd->ibnh', (inp, W1_block)) + b1_block # [.. x top_k x d_block]
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
246
        #  x = x + block_val.unsqueeze(-1) # somehow like residual
Jiezhong Qiu's avatar
Jiezhong Qiu committed
247

Jiezhong Qiu's avatar
Jiezhong Qiu committed
248
        x = x * gate.unsqueeze(-1)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

        relu_out = F.relu(x)
        relu_out = self.dropout_middle(relu_out)

        W2_block = self.W2[block_idx] # [.. x top_k x d_model]

        core_out = torch.einsum('ibnh,ibnhd->ibd', (x, W2_block)) + self.b2 # [.. x d_model]
        core_out = self.dropout_final(core_out)

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output

Jiezhong Qiu's avatar
Jiezhong Qiu committed
264
265
266
267
class SparsePositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        super(SparsePositionwiseFF, self).__init__()
        print("SparsePositionwiseFF")
Jiezhong Qiu's avatar
Jiezhong Qiu committed
268

Jiezhong Qiu's avatar
Jiezhong Qiu committed
269
270
271
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout
Jiezhong Qiu's avatar
Jiezhong Qiu committed
272

Jiezhong Qiu's avatar
Jiezhong Qiu committed
273
274
275
276
277
        self.CoreNet_1 = nn.Sequential(
            nn.Linear(d_model, d_inner),
            nn.ReLU(inplace=True),
            nn.Dropout(dropout)
            )
Jiezhong Qiu's avatar
Jiezhong Qiu committed
278

Jiezhong Qiu's avatar
Jiezhong Qiu committed
279
280
        self.W2 = nn.Parameter(torch.Tensor(d_inner, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
281

Jiezhong Qiu's avatar
Jiezhong Qiu committed
282
283
        self.layer_norm = nn.LayerNorm(d_model)
        self.pre_lnorm = pre_lnorm
Jiezhong Qiu's avatar
Jiezhong Qiu committed
284

Jiezhong Qiu's avatar
Jiezhong Qiu committed
285
286
        self.dropout_final = nn.Dropout(dropout)
        self.reset_parameter()
Jiezhong Qiu's avatar
Jiezhong Qiu committed
287

Jiezhong Qiu's avatar
Jiezhong Qiu committed
288
289
290
291
    def reset_parameter(self):
        temp_Linear = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp_Linear.weight.data.transpose(0, 1)
        self.b2.data = temp_Linear.bias.data
Jiezhong Qiu's avatar
Jiezhong Qiu committed
292

Jiezhong Qiu's avatar
Jiezhong Qiu committed
293
294
295
296
    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
297

Jiezhong Qiu's avatar
Jiezhong Qiu committed
298
299
300
301
302
        relu_out = self.CoreNet_1(inp).view(-1, self.d_inner)
        sparse_relu_out = torch_sparse.SparseTensor.from_dense(relu_out)
        core_out = torch_sparse.matmul(sparse_relu_out, self.W2) + self.b2
        core_out = core_out.view(inp.size(0), inp.size(1), self.d_model)
        core_out = self.dropout_final(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
303

Jiezhong Qiu's avatar
Jiezhong Qiu committed
304
305
306
        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
307

Jiezhong Qiu's avatar
Jiezhong Qiu committed
308
        return output
Jiezhong Qiu's avatar
Jiezhong Qiu committed
309
310
311
312
313
314
315
316

class MultiHeadPositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, n_head=2):
        super(MultiHeadPositionwiseFF, self).__init__()
        print("MultiHeadPositionwiseFF")

        assert d_model % n_head == 0
        self.n_head = n_head
Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
317
        d_head = d_model // n_head
Jiezhong Qiu's avatar
Jiezhong Qiu committed
318
319
320
321
322
        self.d_head = d_head
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

Jiezhong Qiu's avatar
Jiezhong Qiu committed
323
        self.q_net = nn.Linear(d_model, d_model)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
324
325
326
327
328
329
330

        self.k_weight = nn.Parameter(torch.Tensor(n_head, d_inner, d_head))
        self.k_bias = nn.Parameter(torch.Tensor(n_head, d_inner))

        self.v_weight = nn.Parameter(torch.Tensor(n_head, d_head, d_inner))
        self.v_bias = nn.Parameter(torch.Tensor(n_head, d_head))

Jiezhong Qiu's avatar
fix bug  
Jiezhong Qiu committed
331
        #self.o_net = nn.Linear(d_model, d_model)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        self.dropout = nn.Dropout(dropout)

        self.reset_parameter()

    def reset_parameter(self):
        for i in range(self.n_head):
            tmp = nn.Linear(self.d_head, self.d_inner)
            self.k_weight.data[i] = tmp.weight.data
            self.k_bias.data[i] = tmp.bias.data

            tmp = nn.Linear(self.d_inner, self.d_head)
            self.v_weight.data[i] = tmp.weight.data
            self.v_bias.data[i] = tmp.bias.data

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
356
357
        head_q = self.q_net(inp)
        head_q = head_q.view(inp.size(0), inp.size(1), self.n_head, self.d_head) # [.. x n_head x d_head]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
358
359
360
361
362
363
364

        attn_score = torch.einsum('ibnd,nhd->ibnh', (head_q, self.k_weight)) + self.k_bias # [.. x n_head x d_inner]
        attn_score = F.relu(attn_score)
        attn_score = self.dropout(attn_score)

        attn_vec = torch.einsum('ibnh,ndh->ibnd', (attn_score, self.v_weight)) + self.v_bias

Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
365
        attn_vec = attn_vec.contiguous().view(inp.size(0), inp.size(1), self.d_model)
Jiezhong Qiu's avatar
fix bug  
Jiezhong Qiu committed
366
367
        # core_out = self.o_net(attn_vec)
        core_out = self.dropout(attn_vec)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
368
369
370
371
372
373
374

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output

Zhilin Yang's avatar
init  
Zhilin Yang committed
375
class PositionwiseFF(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
376
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, use_softmax=True):
Zhilin Yang's avatar
init  
Zhilin Yang committed
377
378
379
380
381
382
        super(PositionwiseFF, self).__init__()

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

383
384
        self.CoreNet_1 = nn.Sequential(
            nn.Linear(d_model, d_inner),
Jiezhong Qiu's avatar
Jiezhong Qiu committed
385
            nn.Softmax(dim=-1) if use_softmax else nn.ReLU(inplace=True)
386
387
        )
        self.CoreNet_2 = nn.Sequential(
Zhilin Yang's avatar
init  
Zhilin Yang committed
388
389
390
391
392
393
394
395
396
397
398
399
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
            ##### layer normalization + positionwise feed-forward
400
401
            relu_out = self.CoreNet_1(self.layer_norm(inp))
            core_out = self.CoreNet_2(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
402
403
404
405
406

            ##### residual connection
            output = core_out + inp
        else:
            ##### positionwise feed-forward
407
408
            relu_out = self.CoreNet_1(inp)
            core_out = self.CoreNet_2(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
409
410
411
412

            ##### residual connection + layer normalization
            output = self.layer_norm(inp + core_out)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
413
414
        return output
        #  return output, relu_out.detach()
Zhilin Yang's avatar
init  
Zhilin Yang committed
415

Jiezhong Qiu's avatar
Jiezhong Qiu committed
416
417
418
class ExtendedMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
                 pre_lnorm=False):
419
420
        super(ExtendedMultiHeadAttn, self).__init__()
        print("ExtendedMultiHeadAttn")
Jiezhong Qiu's avatar
Jiezhong Qiu committed
421
422
423
424
425
426
427
428
429
430
431

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
432
        self.o_net = nn.Linear(n_head * d_head * 2, d_model, bias=False)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
433
434
435
436
437
438
439

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

440
441
442
        #  self.coeff = nn.Parameter(torch.Tensor(n_head, 2))
        #  nn.init.uniform_(self.coeff, a=-1, b=1)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
    def forward(self, h, attn_mask=None, mems=None):
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
            mem_len = mems.size(0)
        else:
            c = h
            mem_len = 0

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(c)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
470
                attn_score[mem_len:].masked_fill_(attn_mask[None,:,:,None].bool(), -float('inf'))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
471
            elif attn_mask.dim() == 3:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
472
                attn_score[mem_len:].masked_fill_(attn_mask[:,:,:,None].bool(), -float('inf'))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
473
474


475
        mem2other_attn = attn_mask.new_ones(mem_len, c.size(0))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
476
        mem2other_attn[:, :mem_len] = 0
Jiezhong Qiu's avatar
Jiezhong Qiu committed
477
        attn_score[:mem_len].masked_fill_(mem2other_attn[:, :, None, None].bool(), -float('inf'))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
478
479
480
481
482
483
484

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
485
486
487
488
489
490
491
        attn_vec_quad = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, attn_vec))
        # [qlen x bsz x n_head x d_head x 2]
        attn_vecs = torch.cat([attn_vec.unsqueeze(-1), attn_vec_quad.unsqueeze(-1)], dim=-1)

        #  attn_vec = torch.einsum('ibndt,nt->ibnd', (attn_vecs, self.coeff))
        attn_vec = attn_vecs.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head * 2)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

        attn_vec = attn_vec[mem_len:]

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = h + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(h + attn_out)

        return output

Zhilin Yang's avatar
init  
Zhilin Yang committed
508
class MultiHeadAttn(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
509
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
Zhilin Yang's avatar
init  
Zhilin Yang committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
                 pre_lnorm=False):
        super(MultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

    def forward(self, h, attn_mask=None, mems=None):
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
        else:
            c = h

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(h)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
556
                attn_score.masked_fill_(attn_mask[None,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
557
            elif attn_mask.dim() == 3:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
558
                attn_score.masked_fill_(attn_mask[:,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = h + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(h + attn_out)

        return output

class RelMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False):
        super(RelMultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

    def _parallelogram_mask(self, h, w, left=False):
        mask = torch.ones((h, w)).byte()
        m = min(h, w)
        mask[:m,:m] = torch.triu(mask[:m,:m])
        mask[-m:,-m:] = torch.tril(mask[-m:,-m:])

        if left:
            return mask
        else:
            return mask.flip(0)

    def _shift(self, x, qlen, klen, mask, left=False):
        if qlen > 1:
            zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
                                    device=x.device, dtype=x.dtype)
        else:
            zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)

        if left:
            mask = mask.flip(1)
            x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
        else:
            x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)

        x = x_padded.masked_select(mask[:,:,None,None]) \
                    .view(qlen, klen, x.size(2), x.size(3))

        return x

    def _rel_shift(self, x, zero_triu=False):
        zero_pad = torch.zeros((x.size(0), 1, *x.size()[2:]),
                               device=x.device, dtype=x.dtype)
        x_padded = torch.cat([zero_pad, x], dim=1)

        x_padded = x_padded.view(x.size(1) + 1, x.size(0), *x.size()[2:])

        x = x_padded[1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(0), x.size(1)))
            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]

        return x

    def forward(self, w, r, attn_mask=None, mems=None):
        raise NotImplementedError

class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

    def forward(self, w, r, r_w_bias, r_r_bias, attn_mask=None, mems=None):
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head

        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias                                         # qlen x bsz x n_head x d_head
        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head

        rr_head_q = w_head_q + r_r_bias
        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score = attn_score.float().masked_fill(
Jiezhong Qiu's avatar
Jiezhong Qiu committed
703
                    attn_mask[None,:,:,None].bool(), -float('inf')).type_as(attn_score)
Zhilin Yang's avatar
init  
Zhilin Yang committed
704
705
            elif attn_mask.dim() == 3:
                attn_score = attn_score.float().masked_fill(
Jiezhong Qiu's avatar
Jiezhong Qiu committed
706
                    attn_mask[:,:,:,None].bool(), -float('inf')).type_as(attn_score)
Zhilin Yang's avatar
init  
Zhilin Yang committed
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

    def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None):
        # r_emb: [klen, n_head, d_head], used for term B
        # r_w_bias: [n_head, d_head], used for term C
        # r_bias: [klen, n_head], used for term D

        qlen, bsz = w.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)

        if klen > r_emb.size(0):
            r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
            r_emb = torch.cat([r_emb_pad, r_emb], 0)
            r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
            r_bias = torch.cat([r_bias_pad, r_bias], 0)
        else:
            r_emb = r_emb[-klen:]
            r_bias = r_bias[-klen:]

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias[None]                                   # qlen x bsz x n_head x d_head

        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
        B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb))                  # qlen x klen x bsz x n_head
        D_ = r_bias[None, :, None]                                              # 1    x klen x 1   x n_head
        BD = self._rel_shift(B_ + D_)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
789
                attn_score.masked_fill_(attn_mask[None,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
790
            elif attn_mask.dim() == 3:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
791
                attn_score.masked_fill_(attn_mask[:,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

class DecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
        super(DecoderLayer, self).__init__()

        self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
822
        #  self.dec_attn = ExtendedMultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
823
        self.pos_ff = MultiHeadHierarchicalMoEPositionwiseFF(d_model, d_inner, dropout,
Zhilin Yang's avatar
init  
Zhilin Yang committed
824
825
826
827
828
829
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
                               mems=mems)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
830
831
        output = self.pos_ff(output)
        #  output, relu_out = self.pos_ff(output)
Zhilin Yang's avatar
init  
Zhilin Yang committed
832

Jiezhong Qiu's avatar
Jiezhong Qiu committed
833
834
        return output
        #  return output, relu_out
Zhilin Yang's avatar
init  
Zhilin Yang committed
835
836
837
838
839
840
841
842

class RelLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
                                         **kwargs)
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
843
        self.pos_ff = MultiHeadHierarchicalMoEPositionwiseFF(d_model, d_inner, dropout,
Zhilin Yang's avatar
init  
Zhilin Yang committed
844
845
846
847
848
849
850
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
                               attn_mask=dec_attn_mask,
                               mems=mems)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
851
852
        output = self.pos_ff(output)
        #  output, relu_out = self.pos_ff(output)
Zhilin Yang's avatar
init  
Zhilin Yang committed
853

Jiezhong Qiu's avatar
Jiezhong Qiu committed
854
855
        return output
        #  return output, relu_out
Zhilin Yang's avatar
init  
Zhilin Yang committed
856
857
858
859
860
861
862
863

class RelPartialLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelPartialLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
                            d_head, dropout, **kwargs)
Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
864
        self.pos_ff = MultiHeadHierarchicalMoEPositionwiseFF(d_model, d_inner, dropout,
Zhilin Yang's avatar
init  
Zhilin Yang committed
865
866
867
868
869
870
871
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, r, r_w_bias, r_r_bias, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, r, r_w_bias, r_r_bias,
                               attn_mask=dec_attn_mask,
                               mems=mems)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
872
873
        output = self.pos_ff(output)
        #  output, relu_out = self.pos_ff(output)
Zhilin Yang's avatar
init  
Zhilin Yang committed
874

Jiezhong Qiu's avatar
Jiezhong Qiu committed
875
876
        return output
        #  return output, relu_out
Zhilin Yang's avatar
init  
Zhilin Yang committed
877
878
879


class AdaptiveEmbedding(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
880
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
Zhilin Yang's avatar
init  
Zhilin Yang committed
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
                 sample_softmax=False):
        super(AdaptiveEmbedding, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
            self.emb_layers.append(
                nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
            )
            if d_proj != d_embed:
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed)))
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_emb_i)))

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
                embed  = F.linear(embed, self.emb_projs[0])
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
918
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj],
Zhilin Yang's avatar
init  
Zhilin Yang committed
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
                dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = F.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

            embed = emb_flat.view(*inp.size(), self.d_proj)

        embed.mul_(self.emb_scale)

        return embed

class MemTransformerLM(nn.Module):
    def __init__(self, n_token, n_layer, n_head, d_model, d_head, d_inner,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
943
                 dropout, dropatt, tie_weight=True, d_embed=None,
Zhilin Yang's avatar
init  
Zhilin Yang committed
944
                 div_val=1, tie_projs=[False], pre_lnorm=False,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
945
                 tgt_len=None, ext_len=None, mem_len=None,
Zhilin Yang's avatar
init  
Zhilin Yang committed
946
                 cutoffs=[], adapt_inp=False,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
947
                 same_length=False, attn_type=0, clamp_len=-1,
Zhilin Yang's avatar
init  
Zhilin Yang committed
948
949
950
951
952
953
954
955
956
957
                 sample_softmax=-1):
        super(MemTransformerLM, self).__init__()
        self.n_token = n_token

        d_embed = d_model if d_embed is None else d_embed
        self.d_embed = d_embed
        self.d_model = d_model
        self.n_head = n_head
        self.d_head = d_head

Jiezhong Qiu's avatar
Jiezhong Qiu committed
958
        self.word_emb = AdaptiveEmbedding(n_token, d_embed, d_model, cutoffs,
Zhilin Yang's avatar
init  
Zhilin Yang committed
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
                                          div_val=div_val)

        self.drop = nn.Dropout(dropout)

        self.n_layer = n_layer

        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len
        self.max_klen = tgt_len + ext_len + mem_len

        self.attn_type = attn_type

        self.layers = nn.ModuleList()
        if attn_type == 0: # the default attention
            for i in range(n_layer):
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )
        elif attn_type == 1: # learnable embeddings
            for i in range(n_layer):
                self.layers.append(
                    RelLearnableDecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )
        elif attn_type in [2, 3]: # absolute embeddings
            for i in range(n_layer):
                self.layers.append(
                    DecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )

        self.sample_softmax = sample_softmax
        # use sampled softmax
        if sample_softmax > 0:
            self.out_layer = nn.Linear(d_model, n_token)
            if tie_weight:
                self.out_layer.weight = self.word_emb.weight
            self.tie_weight = tie_weight
            self.sampler = LogUniformSampler(n_token, sample_softmax)

        # use adaptive softmax (including standard softmax)
        else:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1008
            self.crit = ProjectedAdaptiveLogSoftmax(n_token, d_embed, d_model,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
                                                    cutoffs, div_val=div_val)

            if tie_weight:
                for i in range(len(self.crit.out_layers)):
                    self.crit.out_layers[i].weight = self.word_emb.emb_layers[i].weight

            if tie_projs:
                for i, tie_proj in enumerate(tie_projs):
                    if tie_proj and div_val == 1 and d_model != d_embed:
                        self.crit.out_projs[i] = self.word_emb.emb_projs[0]
                    elif tie_proj and div_val != 1:
                        self.crit.out_projs[i] = self.word_emb.emb_projs[i]

        self.same_length = same_length
        self.clamp_len = clamp_len

        self._create_params()

    def backward_compatible(self):
        self.sample_softmax = -1

    def _create_params(self):
        if self.attn_type == 0: # default attention
            self.pos_emb = PositionalEmbedding(self.d_model)
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        elif self.attn_type == 1: # learnable
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.n_head, self.d_head))
            self.r_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head))
        elif self.attn_type == 2: # absolute standard
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 3: # absolute deeper SA
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

    def init_mems(self):
        if self.mem_len > 0:
            mems = []
            param = next(self.parameters())
            for i in range(self.n_layer+1):
                empty = torch.empty(0, dtype=param.dtype, device=param.device)
                mems.append(empty)

            return mems
        else:
            return None

    def _update_mems(self, hids, mems, qlen, mlen):
        # does not deal with None
        if mems is None: return None

        # mems is not None
        assert len(hids) == len(mems), 'len(hids) != len(mems)'

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

    def _forward(self, dec_inp, mems=None):
        qlen, bsz = dec_inp.size()

        word_emb = self.word_emb(dec_inp)

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
            all_ones = word_emb.new_ones(qlen, klen)
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
            dec_attn_mask = (torch.triu(all_ones, 1+mlen)
                    + torch.tril(all_ones, -mask_shift_len)).byte()[:, :, None] # -1
        else:
            dec_attn_mask = torch.triu(
                word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]

        hids = []
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1109
        #  relu_outs = []
Zhilin Yang's avatar
init  
Zhilin Yang committed
1110
        if self.attn_type == 0: # default
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1111
            pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1123
1124
                #  core_out, relu_out = layer(core_out, pos_emb, self.r_w_bias,
                core_out = layer(core_out, pos_emb, self.r_w_bias,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1125
1126
                        self.r_r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1127
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
        elif self.attn_type == 1: # learnable
            core_out = self.drop(word_emb)
            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                if self.clamp_len > 0:
                    r_emb = self.r_emb[i][-self.clamp_len :]
                    r_bias = self.r_bias[i][-self.clamp_len :]
                else:
                    r_emb, r_bias = self.r_emb[i], self.r_bias[i]

                mems_i = None if mems is None else mems[i]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1139
1140
                #  core_out, relu_out = layer(core_out, r_emb, self.r_w_bias[i],
                core_out = layer(core_out, r_emb, self.r_w_bias[i],
Zhilin Yang's avatar
init  
Zhilin Yang committed
1141
1142
                        r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1143
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
        elif self.attn_type == 2: # absolute
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb + pos_emb[-qlen:])

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and i == 0:
                    mems_i += pos_emb[:mlen]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1158
1159
                #  core_out, relu_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1160
1161
                                 mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1162
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
        elif self.attn_type == 3:
            core_out = self.drop(word_emb)

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and mlen > 0:
                    cur_emb = self.r_emb[i][:-qlen]
                    cur_size = cur_emb.size(0)
                    if cur_size < mlen:
                        cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
                        cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
                    else:
                        cur_emb = cur_emb[-mlen:]
                    mems_i += cur_emb.view(mlen, 1, -1)
                core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
1180
1181
                #  core_out, relu_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1182
1183
                                 mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1184
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1185
1186
1187
1188
1189

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
1190
1191
        return core_out, new_mems
        #  return core_out, new_mems, relu_outs
Zhilin Yang's avatar
init  
Zhilin Yang committed
1192
1193
1194
1195
1196
1197
1198
1199
1200

    def forward(self, data, target, *mems):
        # nn.DataParallel does not allow size(0) tensors to be broadcasted.
        # So, have to initialize size(0) mems inside the model forward.
        # Moreover, have to return new_mems to allow nn.DataParallel to piece
        # them together.
        if not mems: mems = self.init_mems()

        tgt_len = target.size(0)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1201
1202
        hidden, new_mems = self._forward(data, mems=mems)
        #  hidden, new_mems, relu_outs = self._forward(data, mems=mems)
1203
1204

        #  relu_outs = torch.cat([relu_out.unsqueeze(-1) for relu_out in relu_outs], dim=-1)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1205
1206
1207
1208
1209
1210
1211
1212

        pred_hid = hidden[-tgt_len:]
        if self.sample_softmax > 0 and self.training:
            assert self.tie_weight
            logit = sample_logits(self.word_emb,
                self.out_layer.bias, target, pred_hid, self.sampler)
            loss = -F.log_softmax(logit, -1)[:, :, 0]
        else:
Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
1213
            loss = self.crit(pred_hid.view(-1, pred_hid.size(-1)), target.contiguous().view(-1))
Zhilin Yang's avatar
init  
Zhilin Yang committed
1214
1215
1216
            loss = loss.view(tgt_len, -1)

        if new_mems is None:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1217
1218
            return [loss]
            #  return [relu_outs, loss]
Zhilin Yang's avatar
init  
Zhilin Yang committed
1219
        else:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1220
1221
            return [loss] + new_mems
            #  return [relu_outs, loss] + new_mems
Zhilin Yang's avatar
init  
Zhilin Yang committed
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser(description='unit test')

    parser.add_argument('--n_layer', type=int, default=4, help='')
    parser.add_argument('--n_rel_layer', type=int, default=4, help='')
    parser.add_argument('--n_head', type=int, default=2, help='')
    parser.add_argument('--d_head', type=int, default=2, help='')
    parser.add_argument('--d_model', type=int, default=200, help='')
    parser.add_argument('--d_embed', type=int, default=200, help='')
    parser.add_argument('--d_inner', type=int, default=200, help='')
    parser.add_argument('--dropout', type=float, default=0.0, help='')
    parser.add_argument('--cuda', action='store_true', help='')
    parser.add_argument('--seed', type=int, default=1111, help='')
    parser.add_argument('--multi_gpu', action='store_true', help='')

    args = parser.parse_args()

    device = torch.device("cuda" if args.cuda else "cpu")

    B = 4
    tgt_len, mem_len, ext_len = 36, 36, 0
    data_len = tgt_len * 20
    args.n_token = 10000

    import data_utils

    data = torch.LongTensor(data_len*B).random_(0, args.n_token).to(device)
    diter = data_utils.LMOrderedIterator(data, B, tgt_len, device=device, ext_len=ext_len)

    cutoffs = [args.n_token // 2]
    tie_projs = [False] + [True] * len(cutoffs)

    for div_val in [1, 2]:
        for d_embed in [200, 100]:
            model = MemTransformerLM(args.n_token, args.n_layer, args.n_head,
                            args.d_model, args.d_head, args.d_inner, args.dropout,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1261
1262
                            dropatt=args.dropout, tie_weight=True,
                            d_embed=d_embed, div_val=div_val,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1263
                            tie_projs=tie_projs, pre_lnorm=True,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1264
                            tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1265
1266
1267
1268
1269
1270
1271
1272
1273
                            cutoffs=cutoffs, attn_type=0).to(device)

            print(sum(p.numel() for p in model.parameters()))

            mems = tuple()
            for idx, (inp, tgt, seqlen) in enumerate(diter):
                print('batch {}'.format(idx))
                out = model(inp, tgt, *mems)
                mems = out[1:]