mem_transformer.py 43.7 KB
Newer Older
Zhilin Yang's avatar
init  
Zhilin Yang committed
1
2
3
4
5
6
7
8
9
import sys
import math
import functools

import numpy as np

import torch
import torch.nn as nn
import torch.nn.functional as F
Jiezhong Qiu's avatar
Jiezhong Qiu committed
10
#  import torch_sparse
Zhilin Yang's avatar
init  
Zhilin Yang committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

sys.path.append('utils')
from proj_adaptive_softmax import ProjectedAdaptiveLogSoftmax
from log_uniform_sampler import LogUniformSampler, sample_logits

class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super(PositionalEmbedding, self).__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer('inv_freq', inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:]

Jiezhong Qiu's avatar
Jiezhong Qiu committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
class MoEPositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, top_k=64):
        super(MoEPositionwiseFF, self).__init__()
        print("MoEPositionwiseFF")

        self.top_k = top_k
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

        self.gate = nn.Linear(d_model, d_inner)

        self.W2 = nn.Parameter(torch.Tensor(d_inner, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        ratio = top_k / d_inner
        self.dropout_middle = nn.Dropout(dropout * ratio)
        self.dropout_final = nn.Dropout(dropout)

        self.reset_parameter()

    def reset_parameter(self):
        temp_Linear = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp_Linear.weight.data.transpose(0, 1)
        self.b2.data = temp_Linear.bias.data

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

        gate = self.gate(inp)
        gate_top_k_val, gate_top_k_idx = torch.topk(gate, k=self.top_k, dim=-1, largest=True, sorted=False) # [.. x top_k]
        relu_out = F.relu(gate_top_k_val)

        x = self.dropout_middle(relu_out)

        W2_select = self.W2[gate_top_k_idx] # [.. x top_k x d_model]
        core_out = torch.einsum('ijk,ijkd->ijd', (x, W2_select)) + self.b2 # [.. x d_model]
        core_out = self.dropout_final(core_out)

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output
        #  return output, relu_out.detach()

Jiezhong Qiu's avatar
Jiezhong Qiu committed
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
def my_topk(x, k, inplace=True):
    y = x if inplace else x.clone()
    top1_val, top1_idx = torch.max(y, dim=-1)
    top1_val = top1_val.unsqueeze(-1)
    top1_idx = top1_idx.unsqueeze(-1)
    if k == 1:
        return top1_val, top1_idx
    y.scatter_(-1, top1_idx, value=float('-inf'))
    top2_val, top2_idx = torch.max(y, dim=-1)
    top2_val = top2_val.unsqueeze(-1)
    top2_idx = top2_idx.unsqueeze(-1)

    top_val = torch.cat((top1_val, top2_val), dim=-1)
    top_idx = torch.cat((top1_idx, top2_idx), dim=-1)
    return top_val, top_idx

Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
102
class HierarchicalMoEPositionwiseFF(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
103
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, n_block=64, top_block=2):
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
104
105
106
        super(HierarchicalMoEPositionwiseFF, self).__init__()
        print("HierarchicalMoEPositionwiseFF")

Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
107
        assert d_inner % n_block == 0
Jiezhong Qiu's avatar
Jiezhong Qiu committed
108
        assert top_block in [1, 2]
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
109
110
111
112
113
114
115
116
117
        self.top_block = top_block
        self.n_block = n_block

        d_block = d_inner // n_block
        self.d_block = d_block
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

Jiezhong Qiu's avatar
update  
Jiezhong Qiu committed
118
        self.block_net = nn.Linear(d_model, n_block)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

        self.W1 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b1 = nn.Parameter(torch.Tensor(n_block, d_block))

        self.W2 = nn.Parameter(torch.Tensor(n_block, d_block, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        ratio = top_block / n_block
        self.dropout_middle = nn.Dropout(dropout * ratio)
        self.dropout_final = nn.Dropout(dropout)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
134
        self.scale = 1 / (d_model ** 0.5)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        self.reset_parameter()

    def reset_parameter(self):
        temp = nn.Linear(self.d_model, self.d_inner)
        self.W1.data = temp.weight.data.view(self.n_block, self.d_block, self.d_model)
        self.b1.data = temp.bias.data.view(self.n_block, self.d_block)
        temp = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp.weight.data.transpose(0, 1).contiguous().view(self.n_block, self.d_block, self.d_model)
        self.b2.data = temp.bias.data

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

        block = self.block_net(inp)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
151
152
153

        block_val, block_idx = my_topk(block, k=self.top_block)
        #  block_val, block_idx = torch.topk(block, k=self.top_block, dim=-1, largest=True, sorted=False) # [.. x top_k]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
154

Jiezhong Qiu's avatar
Jiezhong Qiu committed
155
156

        #  block_val.mul_(self.scale)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
157
        gate = F.softmax(block_val, dim=-1)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
158
159
160
161
162


        W1_block = self.W1[block_idx] # [.. x top_k x d_block x d_model]
        b1_block = self.b1[block_idx] # [.. x top_k x d_block]

Jiezhong Qiu's avatar
Jiezhong Qiu committed
163
164
165
        x = torch.einsum('ibd,ibnhd->ibnh', (inp, W1_block)) + b1_block # [.. x top_k x d_block]
        x = x + block_val.unsqueeze(-1) # somehow like residual

Jiezhong Qiu's avatar
Jiezhong Qiu committed
166
        x = x * gate.unsqueeze(-1)
Jiezhong Qiu's avatar
hmoe  
Jiezhong Qiu committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

        relu_out = F.relu(x)
        relu_out = self.dropout_middle(relu_out)

        W2_block = self.W2[block_idx] # [.. x top_k x d_model]

        core_out = torch.einsum('ibnh,ibnhd->ibd', (x, W2_block)) + self.b2 # [.. x d_model]
        core_out = self.dropout_final(core_out)

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output

Jiezhong Qiu's avatar
Jiezhong Qiu committed
182
183
184
185
class SparsePositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False):
        super(SparsePositionwiseFF, self).__init__()
        print("SparsePositionwiseFF")
Jiezhong Qiu's avatar
Jiezhong Qiu committed
186

Jiezhong Qiu's avatar
Jiezhong Qiu committed
187
188
189
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout
Jiezhong Qiu's avatar
Jiezhong Qiu committed
190

Jiezhong Qiu's avatar
Jiezhong Qiu committed
191
192
193
194
195
        self.CoreNet_1 = nn.Sequential(
            nn.Linear(d_model, d_inner),
            nn.ReLU(inplace=True),
            nn.Dropout(dropout)
            )
Jiezhong Qiu's avatar
Jiezhong Qiu committed
196

Jiezhong Qiu's avatar
Jiezhong Qiu committed
197
198
        self.W2 = nn.Parameter(torch.Tensor(d_inner, d_model))
        self.b2 = nn.Parameter(torch.Tensor(d_model))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
199

Jiezhong Qiu's avatar
Jiezhong Qiu committed
200
201
        self.layer_norm = nn.LayerNorm(d_model)
        self.pre_lnorm = pre_lnorm
Jiezhong Qiu's avatar
Jiezhong Qiu committed
202

Jiezhong Qiu's avatar
Jiezhong Qiu committed
203
204
        self.dropout_final = nn.Dropout(dropout)
        self.reset_parameter()
Jiezhong Qiu's avatar
Jiezhong Qiu committed
205

Jiezhong Qiu's avatar
Jiezhong Qiu committed
206
207
208
209
    def reset_parameter(self):
        temp_Linear = nn.Linear(self.d_inner, self.d_model)
        self.W2.data = temp_Linear.weight.data.transpose(0, 1)
        self.b2.data = temp_Linear.bias.data
Jiezhong Qiu's avatar
Jiezhong Qiu committed
210

Jiezhong Qiu's avatar
Jiezhong Qiu committed
211
212
213
214
    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
215

Jiezhong Qiu's avatar
Jiezhong Qiu committed
216
217
218
219
220
        relu_out = self.CoreNet_1(inp).view(-1, self.d_inner)
        sparse_relu_out = torch_sparse.SparseTensor.from_dense(relu_out)
        core_out = torch_sparse.matmul(sparse_relu_out, self.W2) + self.b2
        core_out = core_out.view(inp.size(0), inp.size(1), self.d_model)
        core_out = self.dropout_final(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
221

Jiezhong Qiu's avatar
Jiezhong Qiu committed
222
223
224
        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
225

Jiezhong Qiu's avatar
Jiezhong Qiu committed
226
        return output
Jiezhong Qiu's avatar
Jiezhong Qiu committed
227
228
229
230
231
232
233
234

class MultiHeadPositionwiseFF(nn.Module):
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, n_head=2):
        super(MultiHeadPositionwiseFF, self).__init__()
        print("MultiHeadPositionwiseFF")

        assert d_model % n_head == 0
        self.n_head = n_head
Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
235
        d_head = d_model // n_head
Jiezhong Qiu's avatar
Jiezhong Qiu committed
236
237
238
239
240
        self.d_head = d_head
        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

Jiezhong Qiu's avatar
Jiezhong Qiu committed
241
        self.q_net = nn.Linear(d_model, d_model)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
242
243
244
245
246
247
248

        self.k_weight = nn.Parameter(torch.Tensor(n_head, d_inner, d_head))
        self.k_bias = nn.Parameter(torch.Tensor(n_head, d_inner))

        self.v_weight = nn.Parameter(torch.Tensor(n_head, d_head, d_inner))
        self.v_bias = nn.Parameter(torch.Tensor(n_head, d_head))

Jiezhong Qiu's avatar
fix bug  
Jiezhong Qiu committed
249
        #self.o_net = nn.Linear(d_model, d_model)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

        self.dropout = nn.Dropout(dropout)

        self.reset_parameter()

    def reset_parameter(self):
        for i in range(self.n_head):
            tmp = nn.Linear(self.d_head, self.d_inner)
            self.k_weight.data[i] = tmp.weight.data
            self.k_bias.data[i] = tmp.bias.data

            tmp = nn.Linear(self.d_inner, self.d_head)
            self.v_weight.data[i] = tmp.weight.data
            self.v_bias.data[i] = tmp.bias.data

    def forward(self, inp):
        residual = inp
        if self.pre_lnorm:
            inp = self.layer_norm(inp)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
274
275
        head_q = self.q_net(inp)
        head_q = head_q.view(inp.size(0), inp.size(1), self.n_head, self.d_head) # [.. x n_head x d_head]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
276
277
278
279
280
281
282

        attn_score = torch.einsum('ibnd,nhd->ibnh', (head_q, self.k_weight)) + self.k_bias # [.. x n_head x d_inner]
        attn_score = F.relu(attn_score)
        attn_score = self.dropout(attn_score)

        attn_vec = torch.einsum('ibnh,ndh->ibnd', (attn_score, self.v_weight)) + self.v_bias

Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
283
        attn_vec = attn_vec.contiguous().view(inp.size(0), inp.size(1), self.d_model)
Jiezhong Qiu's avatar
fix bug  
Jiezhong Qiu committed
284
285
        # core_out = self.o_net(attn_vec)
        core_out = self.dropout(attn_vec)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
286
287
288
289
290
291
292

        output = core_out + residual
        if not self.pre_lnorm:
            output = self.layer_norm(output)

        return output

Zhilin Yang's avatar
init  
Zhilin Yang committed
293
class PositionwiseFF(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
294
    def __init__(self, d_model, d_inner, dropout, pre_lnorm=False, use_softmax=True):
Zhilin Yang's avatar
init  
Zhilin Yang committed
295
296
297
298
299
300
        super(PositionwiseFF, self).__init__()

        self.d_model = d_model
        self.d_inner = d_inner
        self.dropout = dropout

301
302
        self.CoreNet_1 = nn.Sequential(
            nn.Linear(d_model, d_inner),
Jiezhong Qiu's avatar
Jiezhong Qiu committed
303
            nn.Softmax(dim=-1) if use_softmax else nn.ReLU(inplace=True)
304
305
        )
        self.CoreNet_2 = nn.Sequential(
Zhilin Yang's avatar
init  
Zhilin Yang committed
306
307
308
309
310
311
312
313
314
315
316
317
            nn.Dropout(dropout),
            nn.Linear(d_inner, d_model),
            nn.Dropout(dropout),
        )

        self.layer_norm = nn.LayerNorm(d_model)

        self.pre_lnorm = pre_lnorm

    def forward(self, inp):
        if self.pre_lnorm:
            ##### layer normalization + positionwise feed-forward
318
319
            relu_out = self.CoreNet_1(self.layer_norm(inp))
            core_out = self.CoreNet_2(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
320
321
322
323
324

            ##### residual connection
            output = core_out + inp
        else:
            ##### positionwise feed-forward
325
326
            relu_out = self.CoreNet_1(inp)
            core_out = self.CoreNet_2(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
327
328
329
330

            ##### residual connection + layer normalization
            output = self.layer_norm(inp + core_out)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
331
332
        return output
        #  return output, relu_out.detach()
Zhilin Yang's avatar
init  
Zhilin Yang committed
333

Jiezhong Qiu's avatar
Jiezhong Qiu committed
334
335
336
class ExtendedMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
                 pre_lnorm=False):
337
338
        super(ExtendedMultiHeadAttn, self).__init__()
        print("ExtendedMultiHeadAttn")
Jiezhong Qiu's avatar
Jiezhong Qiu committed
339
340
341
342
343
344
345
346
347
348
349

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
350
        self.o_net = nn.Linear(n_head * d_head * 2, d_model, bias=False)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
351
352
353
354
355
356
357

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

358
359
360
        #  self.coeff = nn.Parameter(torch.Tensor(n_head, 2))
        #  nn.init.uniform_(self.coeff, a=-1, b=1)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
    def forward(self, h, attn_mask=None, mems=None):
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
            mem_len = mems.size(0)
        else:
            c = h
            mem_len = 0

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(c)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
388
                attn_score[mem_len:].masked_fill_(attn_mask[None,:,:,None].bool(), -float('inf'))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
389
            elif attn_mask.dim() == 3:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
390
                attn_score[mem_len:].masked_fill_(attn_mask[:,:,:,None].bool(), -float('inf'))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
391
392


393
        mem2other_attn = attn_mask.new_ones(mem_len, c.size(0))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
394
        mem2other_attn[:, :mem_len] = 0
Jiezhong Qiu's avatar
Jiezhong Qiu committed
395
        attn_score[:mem_len].masked_fill_(mem2other_attn[:, :, None, None].bool(), -float('inf'))
Jiezhong Qiu's avatar
Jiezhong Qiu committed
396
397
398
399
400
401
402

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
403
404
405
406
407
408
409
        attn_vec_quad = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, attn_vec))
        # [qlen x bsz x n_head x d_head x 2]
        attn_vecs = torch.cat([attn_vec.unsqueeze(-1), attn_vec_quad.unsqueeze(-1)], dim=-1)

        #  attn_vec = torch.einsum('ibndt,nt->ibnd', (attn_vecs, self.coeff))
        attn_vec = attn_vecs.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head * 2)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

        attn_vec = attn_vec[mem_len:]

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = h + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(h + attn_out)

        return output

Zhilin Yang's avatar
init  
Zhilin Yang committed
426
class MultiHeadAttn(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
427
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
Zhilin Yang's avatar
init  
Zhilin Yang committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
                 pre_lnorm=False):
        super(MultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.q_net = nn.Linear(d_model, n_head * d_head, bias=False)
        self.kv_net = nn.Linear(d_model, 2 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

    def forward(self, h, attn_mask=None, mems=None):
        ##### multihead attention
        # [hlen x bsz x n_head x d_head]

        if mems is not None:
            c = torch.cat([mems, h], 0)
        else:
            c = h

        if self.pre_lnorm:
            ##### layer normalization
            c = self.layer_norm(c)

        head_q = self.q_net(h)
        head_k, head_v = torch.chunk(self.kv_net(c), 2, -1)

        head_q = head_q.view(h.size(0), h.size(1), self.n_head, self.d_head)
        head_k = head_k.view(c.size(0), c.size(1), self.n_head, self.d_head)
        head_v = head_v.view(c.size(0), c.size(1), self.n_head, self.d_head)

        # [qlen x klen x bsz x n_head]
        attn_score = torch.einsum('ibnd,jbnd->ijbn', (head_q, head_k))
        attn_score.mul_(self.scale)
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
474
                attn_score.masked_fill_(attn_mask[None,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
475
            elif attn_mask.dim() == 3:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
476
                attn_score.masked_fill_(attn_mask[:,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        # [qlen x klen x bsz x n_head] + [klen x bsz x n_head x d_head] -> [qlen x bsz x n_head x d_head]
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, head_v))
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = h + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(h + attn_out)

        return output

class RelMultiHeadAttn(nn.Module):
    def __init__(self, n_head, d_model, d_head, dropout, dropatt=0,
                 tgt_len=None, ext_len=None, mem_len=None, pre_lnorm=False):
        super(RelMultiHeadAttn, self).__init__()

        self.n_head = n_head
        self.d_model = d_model
        self.d_head = d_head
        self.dropout = dropout

        self.qkv_net = nn.Linear(d_model, 3 * n_head * d_head, bias=False)

        self.drop = nn.Dropout(dropout)
        self.dropatt = nn.Dropout(dropatt)
        self.o_net = nn.Linear(n_head * d_head, d_model, bias=False)

        self.layer_norm = nn.LayerNorm(d_model)

        self.scale = 1 / (d_head ** 0.5)

        self.pre_lnorm = pre_lnorm

    def _parallelogram_mask(self, h, w, left=False):
        mask = torch.ones((h, w)).byte()
        m = min(h, w)
        mask[:m,:m] = torch.triu(mask[:m,:m])
        mask[-m:,-m:] = torch.tril(mask[-m:,-m:])

        if left:
            return mask
        else:
            return mask.flip(0)

    def _shift(self, x, qlen, klen, mask, left=False):
        if qlen > 1:
            zero_pad = torch.zeros((x.size(0), qlen-1, x.size(2), x.size(3)),
                                    device=x.device, dtype=x.dtype)
        else:
            zero_pad = torch.zeros(0, device=x.device, dtype=x.dtype)

        if left:
            mask = mask.flip(1)
            x_padded = torch.cat([zero_pad, x], dim=1).expand(qlen, -1, -1, -1)
        else:
            x_padded = torch.cat([x, zero_pad], dim=1).expand(qlen, -1, -1, -1)

        x = x_padded.masked_select(mask[:,:,None,None]) \
                    .view(qlen, klen, x.size(2), x.size(3))

        return x

    def _rel_shift(self, x, zero_triu=False):
        zero_pad = torch.zeros((x.size(0), 1, *x.size()[2:]),
                               device=x.device, dtype=x.dtype)
        x_padded = torch.cat([zero_pad, x], dim=1)

        x_padded = x_padded.view(x.size(1) + 1, x.size(0), *x.size()[2:])

        x = x_padded[1:].view_as(x)

        if zero_triu:
            ones = torch.ones((x.size(0), x.size(1)))
            x = x * torch.tril(ones, x.size(1) - x.size(0))[:,:,None,None]

        return x

    def forward(self, w, r, attn_mask=None, mems=None):
        raise NotImplementedError

class RelPartialLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelPartialLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

        self.r_net = nn.Linear(self.d_model, self.n_head * self.d_head, bias=False)

    def forward(self, w, r, r_w_bias, r_r_bias, attn_mask=None, mems=None):
        qlen, rlen, bsz = w.size(0), r.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)
            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            r_head_k = self.r_net(r)

            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)           # qlen x bsz x n_head x d_head

        r_head_k = r_head_k.view(rlen, self.n_head, self.d_head)                # qlen x n_head x d_head

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias                                         # qlen x bsz x n_head x d_head
        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head

        rr_head_q = w_head_q + r_r_bias
        BD = torch.einsum('ibnd,jnd->ijbn', (rr_head_q, r_head_k))              # qlen x klen x bsz x n_head
        BD = self._rel_shift(BD)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
                attn_score = attn_score.float().masked_fill(
Jiezhong Qiu's avatar
Jiezhong Qiu committed
621
                    attn_mask[None,:,:,None].bool(), -float('inf')).type_as(attn_score)
Zhilin Yang's avatar
init  
Zhilin Yang committed
622
623
            elif attn_mask.dim() == 3:
                attn_score = attn_score.float().masked_fill(
Jiezhong Qiu's avatar
Jiezhong Qiu committed
624
                    attn_mask[:,:,:,None].bool(), -float('inf')).type_as(attn_score)
Zhilin Yang's avatar
init  
Zhilin Yang committed
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

class RelLearnableMultiHeadAttn(RelMultiHeadAttn):
    def __init__(self, *args, **kwargs):
        super(RelLearnableMultiHeadAttn, self).__init__(*args, **kwargs)

    def forward(self, w, r_emb, r_w_bias, r_bias, attn_mask=None, mems=None):
        # r_emb: [klen, n_head, d_head], used for term B
        # r_w_bias: [n_head, d_head], used for term C
        # r_bias: [klen, n_head], used for term D

        qlen, bsz = w.size(0), w.size(1)

        if mems is not None:
            cat = torch.cat([mems, w], 0)
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(cat))
            else:
                w_heads = self.qkv_net(cat)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

            w_head_q = w_head_q[-qlen:]
        else:
            if self.pre_lnorm:
                w_heads = self.qkv_net(self.layer_norm(w))
            else:
                w_heads = self.qkv_net(w)
            w_head_q, w_head_k, w_head_v = torch.chunk(w_heads, 3, dim=-1)

        klen = w_head_k.size(0)

        w_head_q = w_head_q.view(qlen, bsz, self.n_head, self.d_head)
        w_head_k = w_head_k.view(klen, bsz, self.n_head, self.d_head)
        w_head_v = w_head_v.view(klen, bsz, self.n_head, self.d_head)

        if klen > r_emb.size(0):
            r_emb_pad = r_emb[0:1].expand(klen-r_emb.size(0), -1, -1)
            r_emb = torch.cat([r_emb_pad, r_emb], 0)
            r_bias_pad = r_bias[0:1].expand(klen-r_bias.size(0), -1)
            r_bias = torch.cat([r_bias_pad, r_bias], 0)
        else:
            r_emb = r_emb[-klen:]
            r_bias = r_bias[-klen:]

        #### compute attention score
        rw_head_q = w_head_q + r_w_bias[None]                                   # qlen x bsz x n_head x d_head

        AC = torch.einsum('ibnd,jbnd->ijbn', (rw_head_q, w_head_k))             # qlen x klen x bsz x n_head
        B_ = torch.einsum('ibnd,jnd->ijbn', (w_head_q, r_emb))                  # qlen x klen x bsz x n_head
        D_ = r_bias[None, :, None]                                              # 1    x klen x 1   x n_head
        BD = self._rel_shift(B_ + D_)

        # [qlen x klen x bsz x n_head]
        attn_score = AC + BD
        attn_score.mul_(self.scale)

        #### compute attention probability
        if attn_mask is not None and attn_mask.any().item():
            if attn_mask.dim() == 2:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
707
                attn_score.masked_fill_(attn_mask[None,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
708
            elif attn_mask.dim() == 3:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
709
                attn_score.masked_fill_(attn_mask[:,:,:,None].bool(), -float('inf'))
Zhilin Yang's avatar
init  
Zhilin Yang committed
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

        # [qlen x klen x bsz x n_head]
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropatt(attn_prob)

        #### compute attention vector
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', (attn_prob, w_head_v))

        # [qlen x bsz x n_head x d_head]
        attn_vec = attn_vec.contiguous().view(
            attn_vec.size(0), attn_vec.size(1), self.n_head * self.d_head)

        ##### linear projection
        attn_out = self.o_net(attn_vec)
        attn_out = self.drop(attn_out)

        if self.pre_lnorm:
            ##### residual connection
            output = w + attn_out
        else:
            ##### residual connection + layer normalization
            output = self.layer_norm(w + attn_out)

        return output

class DecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout, **kwargs):
        super(DecoderLayer, self).__init__()

        self.dec_attn = MultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
740
        #  self.dec_attn = ExtendedMultiHeadAttn(n_head, d_model, d_head, dropout, **kwargs)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
741
        self.pos_ff = HierarchicalMoEPositionwiseFF(d_model, d_inner, dropout,
Zhilin Yang's avatar
init  
Zhilin Yang committed
742
743
744
745
746
747
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, attn_mask=dec_attn_mask,
                               mems=mems)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
748
749
        output = self.pos_ff(output)
        #  output, relu_out = self.pos_ff(output)
Zhilin Yang's avatar
init  
Zhilin Yang committed
750

Jiezhong Qiu's avatar
Jiezhong Qiu committed
751
752
        return output
        #  return output, relu_out
Zhilin Yang's avatar
init  
Zhilin Yang committed
753
754
755
756
757
758
759
760

class RelLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelLearnableMultiHeadAttn(n_head, d_model, d_head, dropout,
                                         **kwargs)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
761
        self.pos_ff = HierarchicalMoEPositionwiseFF(d_model, d_inner, dropout,
Zhilin Yang's avatar
init  
Zhilin Yang committed
762
763
764
765
766
767
768
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, r_emb, r_w_bias, r_bias, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, r_emb, r_w_bias, r_bias,
                               attn_mask=dec_attn_mask,
                               mems=mems)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
769
770
        output = self.pos_ff(output)
        #  output, relu_out = self.pos_ff(output)
Zhilin Yang's avatar
init  
Zhilin Yang committed
771

Jiezhong Qiu's avatar
Jiezhong Qiu committed
772
773
        return output
        #  return output, relu_out
Zhilin Yang's avatar
init  
Zhilin Yang committed
774
775
776
777
778
779
780
781

class RelPartialLearnableDecoderLayer(nn.Module):
    def __init__(self, n_head, d_model, d_head, d_inner, dropout,
                 **kwargs):
        super(RelPartialLearnableDecoderLayer, self).__init__()

        self.dec_attn = RelPartialLearnableMultiHeadAttn(n_head, d_model,
                            d_head, dropout, **kwargs)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
782
        self.pos_ff = HierarchicalMoEPositionwiseFF(d_model, d_inner, dropout,
Zhilin Yang's avatar
init  
Zhilin Yang committed
783
784
785
786
787
788
789
                                     pre_lnorm=kwargs.get('pre_lnorm'))

    def forward(self, dec_inp, r, r_w_bias, r_r_bias, dec_attn_mask=None, mems=None):

        output = self.dec_attn(dec_inp, r, r_w_bias, r_r_bias,
                               attn_mask=dec_attn_mask,
                               mems=mems)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
790
791
        output = self.pos_ff(output)
        #  output, relu_out = self.pos_ff(output)
Zhilin Yang's avatar
init  
Zhilin Yang committed
792

Jiezhong Qiu's avatar
Jiezhong Qiu committed
793
794
        return output
        #  return output, relu_out
Zhilin Yang's avatar
init  
Zhilin Yang committed
795
796
797


class AdaptiveEmbedding(nn.Module):
Jiezhong Qiu's avatar
Jiezhong Qiu committed
798
    def __init__(self, n_token, d_embed, d_proj, cutoffs, div_val=1,
Zhilin Yang's avatar
init  
Zhilin Yang committed
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
                 sample_softmax=False):
        super(AdaptiveEmbedding, self).__init__()

        self.n_token = n_token
        self.d_embed = d_embed

        self.cutoffs = cutoffs + [n_token]
        self.div_val = div_val
        self.d_proj = d_proj

        self.emb_scale = d_proj ** 0.5

        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
            self.emb_layers.append(
                nn.Embedding(n_token, d_embed, sparse=sample_softmax>0)
            )
            if d_proj != d_embed:
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_embed)))
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i+1]
                d_emb_i = d_embed // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx-l_idx, d_emb_i))
                self.emb_projs.append(nn.Parameter(torch.Tensor(d_proj, d_emb_i)))

    def forward(self, inp):
        if self.div_val == 1:
            embed = self.emb_layers[0](inp)
            if self.d_proj != self.d_embed:
                embed  = F.linear(embed, self.emb_projs[0])
        else:
            param = next(self.parameters())
            inp_flat = inp.view(-1)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
836
            emb_flat = torch.zeros([inp_flat.size(0), self.d_proj],
Zhilin Yang's avatar
init  
Zhilin Yang committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
                dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = F.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

            embed = emb_flat.view(*inp.size(), self.d_proj)

        embed.mul_(self.emb_scale)

        return embed

class MemTransformerLM(nn.Module):
    def __init__(self, n_token, n_layer, n_head, d_model, d_head, d_inner,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
861
                 dropout, dropatt, tie_weight=True, d_embed=None,
Zhilin Yang's avatar
init  
Zhilin Yang committed
862
                 div_val=1, tie_projs=[False], pre_lnorm=False,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
863
                 tgt_len=None, ext_len=None, mem_len=None,
Zhilin Yang's avatar
init  
Zhilin Yang committed
864
                 cutoffs=[], adapt_inp=False,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
865
                 same_length=False, attn_type=0, clamp_len=-1,
Zhilin Yang's avatar
init  
Zhilin Yang committed
866
867
868
869
870
871
872
873
874
875
                 sample_softmax=-1):
        super(MemTransformerLM, self).__init__()
        self.n_token = n_token

        d_embed = d_model if d_embed is None else d_embed
        self.d_embed = d_embed
        self.d_model = d_model
        self.n_head = n_head
        self.d_head = d_head

Jiezhong Qiu's avatar
Jiezhong Qiu committed
876
        self.word_emb = AdaptiveEmbedding(n_token, d_embed, d_model, cutoffs,
Zhilin Yang's avatar
init  
Zhilin Yang committed
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
                                          div_val=div_val)

        self.drop = nn.Dropout(dropout)

        self.n_layer = n_layer

        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len
        self.max_klen = tgt_len + ext_len + mem_len

        self.attn_type = attn_type

        self.layers = nn.ModuleList()
        if attn_type == 0: # the default attention
            for i in range(n_layer):
                self.layers.append(
                    RelPartialLearnableDecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )
        elif attn_type == 1: # learnable embeddings
            for i in range(n_layer):
                self.layers.append(
                    RelLearnableDecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )
        elif attn_type in [2, 3]: # absolute embeddings
            for i in range(n_layer):
                self.layers.append(
                    DecoderLayer(
                        n_head, d_model, d_head, d_inner, dropout,
                        dropatt=dropatt, pre_lnorm=pre_lnorm)
                )

        self.sample_softmax = sample_softmax
        # use sampled softmax
        if sample_softmax > 0:
            self.out_layer = nn.Linear(d_model, n_token)
            if tie_weight:
                self.out_layer.weight = self.word_emb.weight
            self.tie_weight = tie_weight
            self.sampler = LogUniformSampler(n_token, sample_softmax)

        # use adaptive softmax (including standard softmax)
        else:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
926
            self.crit = ProjectedAdaptiveLogSoftmax(n_token, d_embed, d_model,
Zhilin Yang's avatar
init  
Zhilin Yang committed
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
                                                    cutoffs, div_val=div_val)

            if tie_weight:
                for i in range(len(self.crit.out_layers)):
                    self.crit.out_layers[i].weight = self.word_emb.emb_layers[i].weight

            if tie_projs:
                for i, tie_proj in enumerate(tie_projs):
                    if tie_proj and div_val == 1 and d_model != d_embed:
                        self.crit.out_projs[i] = self.word_emb.emb_projs[0]
                    elif tie_proj and div_val != 1:
                        self.crit.out_projs[i] = self.word_emb.emb_projs[i]

        self.same_length = same_length
        self.clamp_len = clamp_len

        self._create_params()

    def backward_compatible(self):
        self.sample_softmax = -1

    def _create_params(self):
        if self.attn_type == 0: # default attention
            self.pos_emb = PositionalEmbedding(self.d_model)
            self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
            self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        elif self.attn_type == 1: # learnable
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))
            self.r_w_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.n_head, self.d_head))
            self.r_bias = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head))
        elif self.attn_type == 2: # absolute standard
            self.pos_emb = PositionalEmbedding(self.d_model)
        elif self.attn_type == 3: # absolute deeper SA
            self.r_emb = nn.Parameter(torch.Tensor(
                    self.n_layer, self.max_klen, self.n_head, self.d_head))

    def reset_length(self, tgt_len, ext_len, mem_len):
        self.tgt_len = tgt_len
        self.mem_len = mem_len
        self.ext_len = ext_len

    def init_mems(self):
        if self.mem_len > 0:
            mems = []
            param = next(self.parameters())
            for i in range(self.n_layer+1):
                empty = torch.empty(0, dtype=param.dtype, device=param.device)
                mems.append(empty)

            return mems
        else:
            return None

    def _update_mems(self, hids, mems, qlen, mlen):
        # does not deal with None
        if mems is None: return None

        # mems is not None
        assert len(hids) == len(mems), 'len(hids) != len(mems)'

        # There are `mlen + qlen` steps that can be cached into mems
        # For the next step, the last `ext_len` of the `qlen` tokens
        # will be used as the extended context. Hence, we only cache
        # the tokens from `mlen + qlen - self.ext_len - self.mem_len`
        # to `mlen + qlen - self.ext_len`.
        with torch.no_grad():
            new_mems = []
            end_idx = mlen + max(0, qlen - 0 - self.ext_len)
            beg_idx = max(0, end_idx - self.mem_len)
            for i in range(len(hids)):

                cat = torch.cat([mems[i], hids[i]], dim=0)
                new_mems.append(cat[beg_idx:end_idx].detach())

        return new_mems

    def _forward(self, dec_inp, mems=None):
        qlen, bsz = dec_inp.size()

        word_emb = self.word_emb(dec_inp)

        mlen = mems[0].size(0) if mems is not None else 0
        klen = mlen + qlen
        if self.same_length:
            all_ones = word_emb.new_ones(qlen, klen)
            mask_len = klen - self.mem_len
            if mask_len > 0:
                mask_shift_len = qlen - mask_len
            else:
                mask_shift_len = qlen
            dec_attn_mask = (torch.triu(all_ones, 1+mlen)
                    + torch.tril(all_ones, -mask_shift_len)).byte()[:, :, None] # -1
        else:
            dec_attn_mask = torch.triu(
                word_emb.new_ones(qlen, klen), diagonal=1+mlen).byte()[:,:,None]

        hids = []
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1027
        #  relu_outs = []
Zhilin Yang's avatar
init  
Zhilin Yang committed
1028
        if self.attn_type == 0: # default
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1029
            pos_seq = torch.arange(klen-1, -1, -1.0, device=word_emb.device,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb)
            pos_emb = self.drop(pos_emb)

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1041
1042
                #  core_out, relu_out = layer(core_out, pos_emb, self.r_w_bias,
                core_out = layer(core_out, pos_emb, self.r_w_bias,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1043
1044
                        self.r_r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1045
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        elif self.attn_type == 1: # learnable
            core_out = self.drop(word_emb)
            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                if self.clamp_len > 0:
                    r_emb = self.r_emb[i][-self.clamp_len :]
                    r_bias = self.r_bias[i][-self.clamp_len :]
                else:
                    r_emb, r_bias = self.r_emb[i], self.r_bias[i]

                mems_i = None if mems is None else mems[i]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1057
1058
                #  core_out, relu_out = layer(core_out, r_emb, self.r_w_bias[i],
                core_out = layer(core_out, r_emb, self.r_w_bias[i],
Zhilin Yang's avatar
init  
Zhilin Yang committed
1059
1060
                        r_bias, dec_attn_mask=dec_attn_mask, mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1061
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
        elif self.attn_type == 2: # absolute
            pos_seq = torch.arange(klen - 1, -1, -1.0, device=word_emb.device,
                                   dtype=word_emb.dtype)
            if self.clamp_len > 0:
                pos_seq.clamp_(max=self.clamp_len)
            pos_emb = self.pos_emb(pos_seq)

            core_out = self.drop(word_emb + pos_emb[-qlen:])

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and i == 0:
                    mems_i += pos_emb[:mlen]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1076
1077
                #  core_out, relu_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1078
1079
                                 mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1080
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
        elif self.attn_type == 3:
            core_out = self.drop(word_emb)

            hids.append(core_out)
            for i, layer in enumerate(self.layers):
                mems_i = None if mems is None else mems[i]
                if mems_i is not None and mlen > 0:
                    cur_emb = self.r_emb[i][:-qlen]
                    cur_size = cur_emb.size(0)
                    if cur_size < mlen:
                        cur_emb_pad = cur_emb[0:1].expand(mlen-cur_size, -1, -1)
                        cur_emb = torch.cat([cur_emb_pad, cur_emb], 0)
                    else:
                        cur_emb = cur_emb[-mlen:]
                    mems_i += cur_emb.view(mlen, 1, -1)
                core_out += self.r_emb[i][-qlen:].view(qlen, 1, -1)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
1098
1099
                #  core_out, relu_out = layer(core_out, dec_attn_mask=dec_attn_mask,
                core_out = layer(core_out, dec_attn_mask=dec_attn_mask,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1100
1101
                                 mems=mems_i)
                hids.append(core_out)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1102
                #  relu_outs.append(relu_out)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1103
1104
1105
1106
1107

        core_out = self.drop(core_out)

        new_mems = self._update_mems(hids, mems, mlen, qlen)

Jiezhong Qiu's avatar
Jiezhong Qiu committed
1108
1109
        return core_out, new_mems
        #  return core_out, new_mems, relu_outs
Zhilin Yang's avatar
init  
Zhilin Yang committed
1110
1111
1112
1113
1114
1115
1116
1117
1118

    def forward(self, data, target, *mems):
        # nn.DataParallel does not allow size(0) tensors to be broadcasted.
        # So, have to initialize size(0) mems inside the model forward.
        # Moreover, have to return new_mems to allow nn.DataParallel to piece
        # them together.
        if not mems: mems = self.init_mems()

        tgt_len = target.size(0)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1119
1120
        hidden, new_mems = self._forward(data, mems=mems)
        #  hidden, new_mems, relu_outs = self._forward(data, mems=mems)
1121
1122

        #  relu_outs = torch.cat([relu_out.unsqueeze(-1) for relu_out in relu_outs], dim=-1)
Zhilin Yang's avatar
init  
Zhilin Yang committed
1123
1124
1125
1126
1127
1128
1129
1130

        pred_hid = hidden[-tgt_len:]
        if self.sample_softmax > 0 and self.training:
            assert self.tie_weight
            logit = sample_logits(self.word_emb,
                self.out_layer.bias, target, pred_hid, self.sampler)
            loss = -F.log_softmax(logit, -1)[:, :, 0]
        else:
Jiezhong Qiu's avatar
fix  
Jiezhong Qiu committed
1131
            loss = self.crit(pred_hid.view(-1, pred_hid.size(-1)), target.contiguous().view(-1))
Zhilin Yang's avatar
init  
Zhilin Yang committed
1132
1133
1134
            loss = loss.view(tgt_len, -1)

        if new_mems is None:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1135
1136
            return [loss]
            #  return [relu_outs, loss]
Zhilin Yang's avatar
init  
Zhilin Yang committed
1137
        else:
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1138
1139
            return [loss] + new_mems
            #  return [relu_outs, loss] + new_mems
Zhilin Yang's avatar
init  
Zhilin Yang committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178

if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser(description='unit test')

    parser.add_argument('--n_layer', type=int, default=4, help='')
    parser.add_argument('--n_rel_layer', type=int, default=4, help='')
    parser.add_argument('--n_head', type=int, default=2, help='')
    parser.add_argument('--d_head', type=int, default=2, help='')
    parser.add_argument('--d_model', type=int, default=200, help='')
    parser.add_argument('--d_embed', type=int, default=200, help='')
    parser.add_argument('--d_inner', type=int, default=200, help='')
    parser.add_argument('--dropout', type=float, default=0.0, help='')
    parser.add_argument('--cuda', action='store_true', help='')
    parser.add_argument('--seed', type=int, default=1111, help='')
    parser.add_argument('--multi_gpu', action='store_true', help='')

    args = parser.parse_args()

    device = torch.device("cuda" if args.cuda else "cpu")

    B = 4
    tgt_len, mem_len, ext_len = 36, 36, 0
    data_len = tgt_len * 20
    args.n_token = 10000

    import data_utils

    data = torch.LongTensor(data_len*B).random_(0, args.n_token).to(device)
    diter = data_utils.LMOrderedIterator(data, B, tgt_len, device=device, ext_len=ext_len)

    cutoffs = [args.n_token // 2]
    tie_projs = [False] + [True] * len(cutoffs)

    for div_val in [1, 2]:
        for d_embed in [200, 100]:
            model = MemTransformerLM(args.n_token, args.n_layer, args.n_head,
                            args.d_model, args.d_head, args.d_inner, args.dropout,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1179
1180
                            dropatt=args.dropout, tie_weight=True,
                            d_embed=d_embed, div_val=div_val,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1181
                            tie_projs=tie_projs, pre_lnorm=True,
Jiezhong Qiu's avatar
Jiezhong Qiu committed
1182
                            tgt_len=tgt_len, ext_len=ext_len, mem_len=mem_len,
Zhilin Yang's avatar
init  
Zhilin Yang committed
1183
1184
1185
1186
1187
1188
1189
1190
1191
                            cutoffs=cutoffs, attn_type=0).to(device)

            print(sum(p.numel() for p in model.parameters()))

            mems = tuple()
            for idx, (inp, tgt, seqlen) in enumerate(diter):
                print('batch {}'.format(idx))
                out = model(inp, tgt, *mems)
                mems = out[1:]