gshard_gate.py 1.63 KB
Newer Older
Rick Ho's avatar
Rick Ho committed
1
2
3
4
5
6
r"""
Balanced gate with GShard's policy (Google, 2020)
"""
import torch
import torch.nn.functional as F
from .naive_gate import NaiveGate
Rick Ho's avatar
Rick Ho committed
7
8
from fmoe.functions import count_by_gate
import fmoe_cuda as fmoe_native
Rick Ho's avatar
Rick Ho committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31


class GShardGate(NaiveGate):
    def __init__(self, d_model, num_expert, world_size, capacity=(1.2, 2.4)):
        super().__init__(d_model, num_expert, world_size, top_k=2)
        self.capacity = capacity

    def forward(self, x):
        topk_idx, topk_val, gate_score = super().forward(x)

        S = gate_score.shape[0]
        top_k = topk_idx.shape[0] // gate_score.shape[0]
        top1_idx = topk_idx.view((-1, top_k))[:, 0]
        c_e = torch.scatter_add(
                torch.zeros(self.num_expert, device=gate_top_1_idx.device),
                0,
                top1_idx,
                torch.ones_like(top1_idx, dtype=torch.float),
                ) / S
        m_e = torch.mean(F.softmax(gate_score, dim=1), dim=0)
        loss = torch.mean(c_e * m_e) * (self.num_expert ** 2)
        self.set_loss(loss)

Rick Ho's avatar
Rick Ho committed
32
33
34
35
36
37
38
39
40
41
42
43
44
        cap_rate = self.capacity[0 if self.training else 1]
        capacity = torch.ones(self.num_expert, dtype=torch.int32)
        capacity *= math.ceil(cap_rate * x.shape[0])

        pos, lec, gec = count_by_gate(gate, self.num_expert, self.world_size)
        new_gec = fmoe_native.limit_by_capacity(gec, capacity,
                self.num_expert, self.world_size)
        if self.world_size > 1:
            new_lec = fmoe_native.expert_exchange(new_gec, 
                    self.num_expert, self.world_size)
        else:
            new_lec = new_gec
        # TODO: re-assign gate
Rick Ho's avatar
Rick Ho committed
45
46

        return topk_idx, topk_val