test_numerical.py 12.4 KB
Newer Older
1
import sys
2
from collections import OrderedDict
3
from typing import List, Type, Union
Sengxian's avatar
Sengxian committed
4

5
import pytest
Rick Ho's avatar
Rick Ho committed
6
import torch
7
8
import torch.nn as nn

9
from copy import deepcopy
10
11
12
from fmoe.gates import NaiveGate
from fmoe.layers import FMoE
from fmoe.transformer import _Expert
13
from fmoe.distributed import DistributedGroupedDataParallel as LocalDDP
14
from moe import BruteForceMoELinear, BruteForceMoE, NaiveExpert, LinearExpert
Rick Ho's avatar
Rick Ho committed
15
16


17
18
19
def _perform_forward(
    moe: nn.Module, moe_raw: nn.Module, batch_size, d_model, top_k, rank, mp_group
):
20
21
    moe.zero_grad()
    moe_raw.zero_grad()
22
23
24
25
26
27
28
29
30
31
32
33
34
    if not mp_group:
        inp = torch.rand(batch_size, d_model).cuda()
    else:
        group_sender = rank // mp_group.size() * mp_group.size()
        inp = torch.rand(batch_size, d_model).cuda()
        torch.distributed.broadcast(inp, group_sender, group=mp_group)
        torch.distributed.broadcast(
            moe.gate.gate.weight.data, group_sender, group=mp_group
        )
        torch.distributed.broadcast(
            moe.gate.gate.bias.data, group_sender, group=mp_group
        )

35
36
    inp_raw = inp.clone()
    inp.requires_grad = True
37

38
39
40
41
42
    inp_raw.requires_grad = True
    gate_idx, gate_score = moe.gate(inp_raw)
    inp_repeated = inp_raw.repeat_interleave(repeats=top_k, dim=0)
    moe_out = moe(inp)
    raw_out = moe_raw(inp_repeated, gate_idx, gate_score)
43

44
45
46
47
    raw_out.mean().backward()
    moe_out.mean().backward()

    return moe_out, raw_out, inp.grad, inp_raw.grad
48
49


50
def _assert_numercial(names, moe_out_list, raw_out_list, rank):
51
52
53
54
    for name, mo, ro in zip(names, moe_out_list, raw_out_list):
        err = (mo - ro).abs().sum()
        print("Rank {} {} abs err {}".format(rank, name, err))
        if err > 1e-3:
Sengxian's avatar
Sengxian committed
55
            sys.stderr.write(f"=========== {name} moe out ==============\n")
56
            sys.stderr.write("{}\n".format(mo))
Sengxian's avatar
Sengxian committed
57
            sys.stderr.write(f"=========== {name} raw out ==============\n")
58
59
60
61
            sys.stderr.write("{}\n".format(ro))
            assert False


62
class MyMoE(FMoE):
63
64
65
    def __init__(
        self, num_expert, d_model, d_hidden, world_size, mp_group, top_k, activation
    ):
66
67
68
69
70
71
        super().__init__(
            num_expert=num_expert,
            d_model=d_model,
            gate=NaiveGate,
            world_size=world_size,
            mp_group=mp_group,
72
            top_k=top_k,
73
74
75
76
        )
        self.experts = _Expert(num_expert, d_model, d_hidden, activation)


77
@pytest.mark.parametrize("num_expert", [4, 8])
Sengxian's avatar
Sengxian committed
78
@pytest.mark.parametrize("top_k", [2, 3])
79
80
81
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("d_model", [16])
@pytest.mark.parametrize("d_hidden", [32])
82
83
@pytest.mark.parametrize("rank", [0])
@pytest.mark.parametrize("world_size", [1])
84
@pytest.mark.parametrize("mp_group", [None])
85
86
@pytest.mark.parametrize("dp_group", [None])
@pytest.mark.parametrize("world_group", [None])
87
88
89
90
91
92
def test_fmoe_linear(
    num_expert,
    top_k,
    batch_size,
    d_model,
    d_hidden,
93
94
    rank,
    world_size,
95
    mp_group,
96
97
    dp_group,
    world_group,
98
99
    activation=torch.nn.functional.gelu,
):
Rick Ho's avatar
Rick Ho committed
100
101
    torch.manual_seed(42 + rank)
    torch.cuda.manual_seed(42 + rank)
Sengxian's avatar
Sengxian committed
102

103
104
105
    moe = MyMoE(
        num_expert, d_model, d_hidden, world_size, mp_group, top_k, activation
    ).cuda()
Rick Ho's avatar
Rick Ho committed
106

Sengxian's avatar
Sengxian committed
107
108
109
110
    moe_raw = BruteForceMoELinear(
        activation=activation,
        num_expert=num_expert,
        d_model=d_model,
111
        d_hidden=d_hidden,
Sengxian's avatar
Sengxian committed
112
        world_size=world_size,
Sengxian's avatar
Sengxian committed
113
        top_k=top_k,
Sengxian's avatar
Sengxian committed
114
    ).cuda()
Rick Ho's avatar
Rick Ho committed
115
116

    if world_size == 1:
117
118
119
120
        moe_raw.weight_htoh4.data = moe.experts.htoh4.weight.data.clone()
        moe_raw.bias_htoh4.data = moe.experts.htoh4.bias.data.clone()
        moe_raw.weight_h4toh.data = moe.experts.h4toh.weight.data.clone()
        moe_raw.bias_h4toh.data = moe.experts.h4toh.bias.data.clone()
Rick Ho's avatar
Rick Ho committed
121
    else:
Sengxian's avatar
Sengxian committed
122
        weight_htoh4_array = [
123
            torch.empty_like(moe.experts.htoh4.weight.data) for _ in range(world_size)
Sengxian's avatar
Sengxian committed
124
        ]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
125
        bias_htoh4_array = [
126
            torch.empty_like(moe.experts.htoh4.bias.data) for _ in range(world_size)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
127
        ]
128
129
        torch.distributed.all_gather(weight_htoh4_array, moe.experts.htoh4.weight.data)
        torch.distributed.all_gather(bias_htoh4_array, moe.experts.htoh4.bias.data)
Sengxian's avatar
Sengxian committed
130
        moe_raw.weight_htoh4.data = torch.cat(weight_htoh4_array, dim=0)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
131
        moe_raw.bias_htoh4.data = torch.cat(bias_htoh4_array, dim=0)
Sengxian's avatar
Sengxian committed
132
133

        weight_h4toh_array = [
134
            torch.empty_like(moe.experts.h4toh.weight.data) for _ in range(world_size)
Sengxian's avatar
Sengxian committed
135
        ]
Jiezhong Qiu's avatar
Jiezhong Qiu committed
136
        bias_h4toh_array = [
137
            torch.empty_like(moe.experts.h4toh.bias.data) for _ in range(world_size)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
138
        ]
139
140
        torch.distributed.all_gather(weight_h4toh_array, moe.experts.h4toh.weight.data)
        torch.distributed.all_gather(bias_h4toh_array, moe.experts.h4toh.bias.data)
Sengxian's avatar
Sengxian committed
141
        moe_raw.weight_h4toh.data = torch.cat(weight_h4toh_array, dim=0)
Jiezhong Qiu's avatar
Jiezhong Qiu committed
142
        moe_raw.bias_h4toh.data = torch.cat(bias_h4toh_array, dim=0)
Sengxian's avatar
Sengxian committed
143

144
    moe_out, raw_out, moe_grad_in, raw_grad_in = _perform_forward(
145
146
        moe, moe_raw, batch_size, d_model, top_k, rank, mp_group
    )
Sengxian's avatar
Sengxian committed
147

148
149
    moe_out_list = moe_out, moe_grad_in, moe.experts.htoh4.weight.grad, moe.experts.h4toh.weight.grad, moe.experts.htoh4.bias.grad, moe.experts.h4toh.bias.grad
    raw_out_list = raw_out, raw_grad_in, moe_raw.weight_htoh4.grad, moe_raw.weight_h4toh.grad, moe_raw.bias_htoh4.grad, moe_raw.bias_h4toh.grad
Sengxian's avatar
Sengxian committed
150

Rick Ho's avatar
Rick Ho committed
151
    if world_size > 1:
Sengxian's avatar
Sengxian committed
152
        _, __, htoh4_w_grad, h4toh_w_grad, htoh4_b_grad, h4toh_b_grad = raw_out_list
Jiezhong Qiu's avatar
Jiezhong Qiu committed
153
154
155
156
        torch.distributed.all_reduce(htoh4_w_grad)
        torch.distributed.all_reduce(h4toh_w_grad)
        torch.distributed.all_reduce(htoh4_b_grad)
        torch.distributed.all_reduce(h4toh_b_grad)
157
        mp_size = mp_group.size() if mp_group else 1
158
159
160
161
162
163
164
165
166
167
168
169
        htoh4_w_grad = (
            htoh4_w_grad[rank * num_expert : (rank + 1) * num_expert] / mp_size
        )
        h4toh_w_grad = (
            h4toh_w_grad[rank * num_expert : (rank + 1) * num_expert] / mp_size
        )
        htoh4_b_grad = (
            htoh4_b_grad[rank * num_expert : (rank + 1) * num_expert] / mp_size
        )
        h4toh_b_grad = (
            h4toh_b_grad[rank * num_expert : (rank + 1) * num_expert] / mp_size
        )
Sengxian's avatar
Sengxian committed
170
        raw_out_list = _, __, htoh4_w_grad, h4toh_w_grad, htoh4_b_grad, h4toh_b_grad
171

172
    names = ["output", "input grad", "htoh4 weight grad", "h4toh weight grad", "htoh4 bias grad", "h4toh bias grad"]
Sengxian's avatar
Sengxian committed
173

174
    _assert_numercial(names, moe_out_list, raw_out_list, rank)
175

Sengxian's avatar
Sengxian committed
176

177
178
179
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("num_expert", [4, 8])
@pytest.mark.parametrize("d_model", [16])
Sengxian's avatar
Sengxian committed
180
@pytest.mark.parametrize("top_k", [2, 3])
181
@pytest.mark.parametrize("expert", [NaiveExpert, LinearExpert])
182
183
@pytest.mark.parametrize("rank", [0])
@pytest.mark.parametrize("world_size", [1])
184
@pytest.mark.parametrize("mp_group", [None])
185
186
@pytest.mark.parametrize("dp_group", [None])
@pytest.mark.parametrize("world_group", [None])
187
def test_fmoe(
188
189
190
191
192
193
194
    batch_size,
    num_expert,
    d_model,
    top_k,
    expert: Union[Type[nn.Module], str],
    rank,
    world_size,
195
196
197
    mp_group,
    dp_group,
    world_group,
198
199
200
201
202
203
):
    torch.manual_seed(42 + rank)
    torch.cuda.manual_seed(42 + rank)

    if isinstance(expert, str):
        expert = globals()[expert]
Sengxian's avatar
Sengxian committed
204

205
206
207
208
209
    moe = FMoE(
        num_expert=num_expert,
        d_model=d_model,
        gate=NaiveGate,
        world_size=world_size,
210
        mp_group=mp_group,
211
212
213
214
215
        expert=expert,
        top_k=top_k,
    ).cuda()

    moe_raw = BruteForceMoE(
Sengxian's avatar
Sengxian committed
216
217
218
219
220
        expert=expert,
        num_expert=num_expert,
        d_model=d_model,
        world_size=world_size,
        top_k=top_k,
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    ).cuda()

    if world_size == 1:
        for expert_moe, expert_raw in zip(moe.experts, moe_raw.experts):
            for para_moe, para_raw in zip(
                expert_moe.parameters(), expert_raw.parameters()
            ):
                para_raw.data = para_moe.data.clone()
    else:
        assert len(moe.experts) >= 1
        for idx, para in enumerate(moe.experts[0].parameters()):
            para_tensor = torch.cat(
                [list(expert.parameters())[idx].unsqueeze(0) for expert in moe.experts]
            )
            para_array = [torch.empty_like(para_tensor) for _ in range(world_size)]
            torch.distributed.all_gather(para_array, para_tensor)
Sengxian's avatar
Sengxian committed
237
238
239
240
241
242
            para_tensor_gathered = torch.cat(para_array, dim=0)
            assert para_tensor_gathered.shape[0] == len(moe_raw.experts)
            for expertID in range(para_tensor_gathered.shape[0]):
                list(moe_raw.experts[expertID].parameters())[
                    idx
                ].data = para_tensor_gathered[expertID]
243

244
    moe_out, raw_out, moe_grad_in, raw_grad_in = _perform_forward(
245
246
        moe, moe_raw, batch_size, d_model, top_k, rank, mp_group
    )
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    def get_experts_grad(experts: List[nn.Module]):
        return torch.stack(
            [
                torch.stack(
                    [
                        p.grad.sum() if p.grad is not None else torch.zeros(1).cuda()
                        for p in item.parameters()
                    ]
                ).sum()
                for item in experts
            ]
        )

    moe_grad, raw_grad = (
        get_experts_grad(moe.experts),
        get_experts_grad(moe_raw.experts),
    )

    if world_size > 1:
        torch.distributed.all_reduce(raw_grad)
268
269
        mp_size = mp_group.size() if mp_group else 1
        raw_grad = raw_grad[rank * num_expert : (rank + 1) * num_expert] / mp_size
270

271
272
273
    moe_out_list = [moe_out, moe_grad, moe_grad_in]
    raw_out_list = [raw_out, raw_grad, raw_grad_in]
    names = ["forward", "backward", "grad_in"]
274

275
    _assert_numercial(names, moe_out_list, raw_out_list, rank)
Sengxian's avatar
Sengxian committed
276
277


278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
class MyModule(nn.Module):
    def __init__(self, dim=8):
        super(MyModule, self).__init__()
        self.model = nn.Sequential(
            OrderedDict(
                [
                    ("linear1", nn.Linear(dim, dim)),
                    ("relu1", nn.ReLU()),
                    ("linear2", nn.Linear(dim, dim)),
                    ("relu2", nn.ReLU()),
                    ("linear3", nn.Linear(dim, dim)),
                ]
            )
        )

    def set_comm(self):
        for p in self.model._modules["linear1"].parameters():
            setattr(p, "dp_comm", "mp")
        for p in self.model._modules["linear2"].parameters():
            setattr(p, "dp_comm", "dp")
        for p in self.model._modules["linear3"].parameters():
            setattr(p, "dp_comm", "world")

    def forward(self, inp):
        return self.model(inp)


def _test_fmoe_local_ddp(rank, world_size, mp_group, dp_group, world_group):
    batch_size, dim = 4, 8

    torch.manual_seed(42 + rank)
    torch.cuda.manual_seed(42 + rank)

    model = MyModule().cuda()
    model_ddp = LocalDDP(deepcopy(model), mp_group, dp_group, world_group)
    model.set_comm()
    model_ddp.module.set_comm()

    inp = torch.randn(batch_size, dim).cuda()

    raw_out = model(inp).mean()
    ddp_out = model_ddp(inp).mean()

    raw_out.backward()
    ddp_out.backward()

    torch.distributed.all_reduce(
        model.model._modules["linear1"].weight.grad.data, group=mp_group
    )
    model.model._modules["linear1"].weight.grad /= mp_group.size()
    torch.distributed.all_reduce(
        model.model._modules["linear2"].weight.grad.data, group=dp_group
    )
    model.model._modules["linear2"].weight.grad /= dp_group.size()
    torch.distributed.all_reduce(
        model.model._modules["linear3"].weight.grad.data, group=world_group
    )
    model.model._modules["linear3"].weight.grad /= world_group.size()
    model_ddp.allreduce_params(reduce_after=False, fp32_allreduce=False)

    raw_out_list = [
        model.model._modules["linear1"].weight.grad,
        model.model._modules["linear2"].weight.grad,
        model.model._modules["linear3"].weight.grad,
    ]
    ddp_out_list = [
        model_ddp.module.model._modules["linear1"].weight.grad,
        model_ddp.module.model._modules["linear2"].weight.grad,
        model_ddp.module.model._modules["linear3"].weight.grad,
    ]

    names = ["mp grad", "dp grad", "wp grad"]

    _assert_numercial(names, ddp_out_list, raw_out_list, rank)


354
355
356
357
358
359
360
361
362
if __name__ == "__main__":
    test_fmoe_linear(
        batch_size=4,
        num_expert=4,
        d_model=8,
        top_k=2,
        d_hidden=16,
        rank=0,
        world_size=1,
363
        mp_group=None,
364
365
        dp_group=None,
        world_group=None,
366
    )
367
368
369
370
371
372
373
374
    test_fmoe(
        batch_size=4,
        num_expert=4,
        d_model=8,
        top_k=2,
        expert=NaiveExpert,
        rank=0,
        world_size=1,
375
        mp_group=None,
376
377
        dp_group=None,
        world_group=None,
378
    )