test_ddp.py 4.6 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import json
import os
import sys
from typing import Dict

import pytest
import torch
import torch.distributed as dist

from test_numerical import test_fmoe as _test_fmoe
from test_numerical import test_fmoe_linear as _test_fmoe_linear
from test_numerical import _test_fmoe_local_ddp


def _ensure_initialized():
    if not dist.is_initialized():
        os.environ["RANK"] = os.environ.get("OMPI_COMM_WORLD_RANK", "0")
        os.environ["WORLD_SIZE"] = os.environ.get("OMPI_COMM_WORLD_SIZE", "1")
        os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["RANK"]
        os.environ["MASTER_ADDR"] = os.environ.get("MASTER_ADDR", "localhost")
        os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "12211")
        dist.init_process_group(backend="nccl")


def _run_distributed(func, world_size, args: Dict, script=__file__):
    if torch.cuda.device_count() < world_size:
        pytest.skip("No enough GPU")
    import subprocess
    import os

    ps = []
    os.environ["MASTER_ADDR"] = "localhost"
    os.environ["MASTER_PORT"] = "36666"
    os.environ["OMPI_COMM_WORLD_SIZE"] = str(world_size)

    for i in range(world_size):
        os.environ["OMPI_COMM_WORLD_RANK"] = str(i)
        os.environ["HIP_VISIBLE_DEVICES"] = str(i)
        p = subprocess.Popen(
            [sys.executable, script, func, json.dumps(args)], stdout=subprocess.PIPE
        )
        ps.append(p)

    for p in ps:
        p.wait()
        retc = p.poll()
        assert retc == 0


@pytest.mark.parametrize("num_expert", [4, 8])
@pytest.mark.parametrize("top_k", [2])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("d_model", [16])
@pytest.mark.parametrize("d_hidden", [32])
@pytest.mark.parametrize("mp_size", [1, 2])
@pytest.mark.parametrize("data_type", ['torch.FloatTensor', 'torch.DoubleTensor', 'torch.HalfTensor'])
def test_fmoe_linear_distributed(
    num_expert, top_k, batch_size, d_model, d_hidden, mp_size, data_type
):
    _run_distributed(
        "_test_fmoe_linear",
        mp_size * 2,
        {
            "num_expert": num_expert,
            "top_k": top_k,
            "batch_size": batch_size,
            "d_model": d_model,
            "d_hidden": d_hidden,
            "mp_size": mp_size,
            "data_type": data_type
        },
    )


@pytest.mark.parametrize("num_expert", [4, 8])
@pytest.mark.parametrize("top_k", [2])
@pytest.mark.parametrize("batch_size", [4])
@pytest.mark.parametrize("d_model", [16])
@pytest.mark.parametrize("expert", ["NaiveExpert", "LinearExpert"])
@pytest.mark.parametrize("mp_size", [1, 2])
def test_fmoe_distributed(num_expert, top_k, batch_size, d_model, expert, mp_size):
    _run_distributed(
        "_test_fmoe",
        mp_size * 2,
        {
            "num_expert": num_expert,
            "top_k": top_k,
            "batch_size": batch_size,
            "d_model": d_model,
            "expert": expert,
            "mp_size": mp_size,
        },
    )


@pytest.mark.parametrize("mp_size", [1, 2])
def test_fmoe_local_ddp(mp_size):
    _run_distributed(
        _test_fmoe_local_ddp.__name__, mp_size * 2, {"mp_size": mp_size},
    )


if __name__ == "__main__":
    if len(sys.argv) >= 3:
        args = json.loads(sys.argv[2])
        os.environ["RANK"] = os.environ.get("OMPI_COMM_WORLD_RANK", "0")
        os.environ["WORLD_SIZE"] = os.environ.get("OMPI_COMM_WORLD_SIZE", "1")
        os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["RANK"]
        torch.distributed.init_process_group(backend="nccl")
        args["rank"] = torch.distributed.get_rank()
        args["world_size"] = torch.distributed.get_world_size()
        args["mp_group"] = [
            torch.distributed.new_group(
                ranks=[j * args["mp_size"] + i for i in range(args["mp_size"])],
                backend="nccl",
            )
            for j in range(args["world_size"] // args["mp_size"])
        ][args["rank"] // args["mp_size"]]
        args["dp_group"] = [
            torch.distributed.new_group(
                ranks=[
                    i * args["mp_size"] + j
                    for i in range(args["world_size"] // args["mp_size"])
                ],
                backend="nccl",
            )
            for j in range(args["mp_size"])
        ][args["rank"] % args["mp_size"]]
        args["world_group"] = torch.distributed.new_group(
            ranks=list(range(args["world_size"])), backend="nccl",
        )
        del args["mp_size"]
        locals()[sys.argv[1]](**args)
    else:
        test_fmoe_local_ddp(mp_size=2)
        test_fmoe_linear_distributed(
            num_expert=4, top_k=2, batch_size=4, d_model=8, d_hidden=8, mp_size=2,
            data_type="torch.HalfTensor"
        )