benchmark_mlp.py 3.78 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import torch
import torch.nn as nn
from fmoe import FMoETransformerMLP
from fmoe.gates import NaiveGate
from moe import BruteForceMoELinear
import time
import sys
import os


rank = None
world_size = None
dev_name_default = "cuda:0"


class BruteForceMoE(nn.Module):
    def __init__(
        self,
        num_expert=32,
        d_model=1024,
        d_hidden=4096,
        world_size=1,
        mp_group=None,
        activation=torch.nn.functional.gelu,
        gate=NaiveGate,
        top_k=1,
        pre_lnorm=False,
    ):
        assert world_size == 1, "Distributed brute force is not supported"
        super().__init__()
        self.mlp = BruteForceMoELinear(
            activation, num_expert, d_model, d_hidden, 1, top_k
        )
        self.top_k = top_k
        self.gate = gate(d_model, num_expert, world_size, top_k)
        self.pre_lnorm = pre_lnorm
        self.layer_norm = nn.LayerNorm(d_model)
        self.d_model = d_model

    def forward(self, inp):
        if self.pre_lnorm:
            inp = self.layer_norm(inp)
        gate_top_k_idx, gate_score = self.gate(inp)
        inp = inp.repeat_interleave(repeats=self.top_k, dim=0)
        x = self.mlp(inp, gate_top_k_idx, gate_score)
        if not self.pre_lnorm:
            x = self.layer_norm(x)
        return x


def benchmark_mlp(MOELayer, batch_size, in_feat, hidden_feat, num_expert, top_k):
    torch.manual_seed(42 + rank)
    torch.cuda.manual_seed(42 + rank)
    if rank == 0:
        print(
            "Performance test of {} mm size {} {}x{} experts {}x{} topk {}".format(
                MOELayer.__name__,
                batch_size,
                in_feat,
                hidden_feat,
                world_size,
                num_expert,
                top_k,
            )
        )
    if world_size > 1:
        dev_name = "cuda"
    else:
        dev_name = dev_name_default

    inp = torch.rand(batch_size, in_feat).cuda(dev_name)
    inp.requires_grad = True

    moe = MOELayer(
        num_expert=num_expert,
        d_model=in_feat,
        d_hidden=hidden_feat,
        world_size=world_size,
        top_k=top_k,
    ).cuda(dev_name)
    moe.train()

    # warm up
    for _ in range(4):
        _ = moe(inp)

    n_runs = 16
    tott = 0.0
    backt = 0.0
    maxt = 0.0
    sqtot = 0.0
    for i in range(n_runs):
        ts = time.time()
        o = moe(inp)
        te = time.time()

        loss = o.sum()

        bts = time.time()
        loss.backward()
        bte = time.time()

        tott += te - ts
        sqtot += (te - ts) ** 2
        maxt = max(maxt, te - ts)
        backt += bte - bts

    gflops = (
        2e-9
        * n_runs
        * (
            in_feat * hidden_feat * batch_size * top_k * 2
            + batch_size * in_feat * num_expert
        )
        / tott
    )
    print(
        "Time mean/max/stdev/back {:.3f} {:.3f} {:.3f} {:.3f} ms, {:.3f} GFLOPs".format(
            tott * 1e3 / n_runs,
            maxt * 1e3,
            (sqtot / n_runs - (tott / n_runs) ** 2) * 1e3 * top_k / n_runs,
            backt * 1e3 / n_runs,
            gflops,
        )
    )


if __name__ == "__main__":
    if int(os.environ["WORLD_SIZE"]) > 1:
        torch.distributed.init_process_group(backend="nccl")
        rank = torch.distributed.get_rank()
        world_size = torch.distributed.get_world_size()
    else:
        rank = 0
        world_size = 1
    batch_size = int(os.environ.get("BATCH_SIZE", "4096"))
    d_model = int(os.environ.get("D_MODEL", "1024"))
    d_hidden = int(os.environ.get("D_HIDDEN", "4096"))
    num_expert = int(os.environ.get("NUM_EXPERT", "64"))
    top_k = int(os.environ.get("TOP_K", "2"))
    benchmark_mlp(FMoETransformerMLP, batch_size, d_model, d_hidden, num_expert, top_k)
    if world_size == 1:
        benchmark_mlp(BruteForceMoE, batch_size, d_model, d_hidden, num_expert, top_k)