layers.py 7.15 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
r"""
FMoE core layer
"""
import torch
import torch.nn as nn

from .functions import prepare_forward, ensure_comm
from .functions import MOEScatter, MOEGather
from .functions import AllGather, Slice
from .gates import NaiveGate



def mark_module_parallel_comm(module, comm):
    r"""
    Mark all parameters in `module` as doing data parallel in `comm`, where
    `comm` may be one of `'world', 'dp', 'none'`.
    """
    for p in module.parameters():
        setattr(p, "dp_comm", comm)


def _fmoe_general_global_forward(inp, gate, expert_fn, num_expert, world_size):
    r"""
    A private function that performs the following steps to complete the MoE
    computation.
    * Count the number of tokens from each worker to each expert.
    * Send the features to their target position so that input features to each
    expert are contiguous in memory.
    * Perform the forward computation of the experts using `expert_fn`
    * Gather the output features of experts back, and reorder them as sentences.
    Intermediate results like expert counts are hidden from users by this
    function.
    """
    (
        pos,
        local_expert_count,
        global_expert_count,
        fwd_expert_count,
        fwd_batch_size,
    ) = prepare_forward(gate, num_expert, world_size)
    topk = 1
    if len(gate.shape) == 2:
        topk = gate.shape[1]
    x = MOEScatter.apply(
        inp, pos // topk,
        local_expert_count, global_expert_count, fwd_batch_size, world_size
    )
    x = expert_fn(x, fwd_expert_count)

    out_batch_size = inp.shape[0]
    if len(gate.shape) == 2:
        out_batch_size *= gate.shape[1]

    x = MOEGather.apply(
        x, pos,
        local_expert_count, global_expert_count,
        out_batch_size, world_size
    )
    return x


class FMoE(nn.Module):
    r"""
    A general moe implementation that supports an arbitrary module as the
    expert.
    * `num_expert` stands for the number of experts on **each** worker.
    * `world_size` stands for the total number of workers that contains
    different experts.
    * `slice_group` can be a torch's communication group, indicating that
    specific model parallel is applied across the group, and workers in the
    group hold the same copy of input feature, and requires the same copy of
    the output. For each worker, FMoE only computes the output of a certain
    slice of the input batch, and will all-gather the outputs after
    computation.
    * `top_k` stands for the number of experts each token is going to.
    * `gate` is a gate class which can found in `fmoe.gates`.
    * `expert` can be specified as a module class, it is used to generate
    `num_expert` expert modules.
    """

    def __init__(
        self,
        num_expert=32,
        d_model=1024,
        world_size=1,
        mp_group=None, # being deprecated
        slice_group=None,
        moe_group=None,
        top_k=2,
        gate=NaiveGate,
        expert=None,
        gate_hook=None,
        mask=None,
        mask_dict=None,
    ):
        super().__init__()
        self.num_expert = num_expert
        self.d_model = d_model
        self.world_size = world_size

        self.slice_group = slice_group
        if mp_group is not None:
            print('[Warning] mp_group is being deprecated')
            self.slice_group = mp_group
        if self.slice_group is None:
            self.slice_size = 1
            self.slice_rank = 0
        else:
            self.slice_size = self.slice_group.size()
            self.slice_rank = self.slice_group.rank()

        self.top_k = top_k
        if type(expert) is list:
            self.experts = nn.ModuleList([e(d_model) for e in expert])
            self.experts_fused = False
            self.num_expert = num_expert = len(expert)
        elif expert is not None:
            self.experts = nn.ModuleList([expert(d_model)
                for _ in range(num_expert)])
            self.experts_fused = False
        else:
            self.experts_fused = True

        self.gate = gate(d_model, num_expert, world_size, top_k)
        self.gate_hook = gate_hook
        self.mask = mask
        self.mask_dict = mask_dict
        self.moe_group = moe_group

    def expert_fn(self, inp, fwd_expert_count):
        r"""
        The default expert function which either calls the experts as a whole
        or as separate experts.
        """
        if self.experts_fused:
            return self.experts(inp, fwd_expert_count)
        outputs = []
        base_idx = 0
        for i in range(self.num_expert):
            batch_size = fwd_expert_count[i].item()
            inp_slice = inp[base_idx : base_idx + batch_size]
            outputs.append(self.experts[i](inp_slice))
            base_idx += batch_size
        return torch.cat(outputs, dim=0)

    def mark_parallel_comm(self, expert_dp_comm="none"):
        r"""
        Automatically mark the data parallel comms of the parameters within the
        module. This can be typically called at the end of the __init__ function
        in child classes.
        """
        if self.experts is not None:
            comm = expert_dp_comm
            if isinstance(self.experts, list):
                for e in self.experts:
                    mark_module_parallel_comm(e, comm)
            else:
                mark_module_parallel_comm(self.experts, comm)
        mark_module_parallel_comm(self.gate, "gate")

    def forward(self, inp):
        r"""
        The FMoE module first computes gate output, and then conduct MoE forward
        according to the gate.  The score of the selected gate given by the
        expert is multiplied to the experts' output tensors as a weight.
        """
        if self.world_size > 1:
            ensure_comm(inp, self.moe_group)
        if self.slice_size > 1:
            inp = Slice.apply(inp, self.slice_rank,
                    self.slice_size, self.slice_group)

        gate_top_k_idx, gate_score = self.gate(inp)

        if self.gate_hook is not None:
            self.gate_hook(gate_top_k_idx, gate_score, None)

        # delete masked tensors
        if self.mask is not None and self.mask_dict is not None:
            mask = self.mask.view(-1)
            # to: (BxL') x d_model
            inp = inp[mask == 0, :]
            gate_top_k_idx = gate_top_k_idx[mask == 0, :]

        fwd = _fmoe_general_global_forward(
            inp, gate_top_k_idx,
            self.expert_fn, self.num_expert, self.world_size
        )

        # recover deleted tensors
        if self.mask is not None and self.mask_dict is not None:
            # to: (BxL') x top_k x d_model
            fwd = fwd.view(-1, self.top_k, self.d_model)
            # to: (BxL) x top_k x d_model
            x = torch.zeros(mask.shape[0], self.top_k, self.d_model, device=fwd.device, dtype=fwd.dtype)
            # recover
            x[mask == 0] = fwd
            for k, v in self.mask_dict.items():
                x[mask == k] = v
        else:
            x = fwd.view(-1, self.top_k, self.d_model)

        gate_score = gate_score.view(x.shape[0], 1, self.top_k)
        x = torch.bmm(gate_score, x).reshape(-1, self.d_model)

        if self.slice_size > 1:
            x = AllGather.apply(x, self.slice_rank,
                    self.slice_size, self.slice_group)
        return x