noisy_gate.py 5.22 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
r"""
Noisy gate for gshard and switch
"""
from .base_gate import BaseGate

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions.normal import Normal
import math


class NoisyGate(BaseGate):
    def __init__(self, d_model, num_expert, world_size, top_k=2):
        super().__init__(num_expert, world_size)
        self.w_gate = nn.Parameter(
            torch.zeros(d_model, self.tot_expert), requires_grad=True
        )
        self.w_noise = nn.Parameter(
            torch.zeros(d_model, self.tot_expert), requires_grad=True
        )
        self.top_k = top_k
        self.softplus = nn.Softplus()
        self.softmax = nn.Softmax(1)

        self.noise_epsilon = 1e-2

        self.reset_parameters()

    def reset_parameters(self):
        # Approach is the same as in torch.nn.Linear
        # https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L88

        torch.nn.init.kaiming_uniform_(self.w_gate, a=math.sqrt(5))
        torch.nn.init.kaiming_uniform_(self.w_noise, a=math.sqrt(5))


    def _gates_to_load(self, gates):
        """Compute the true load per expert, given the gates.
        The load is the number of examples for which the corresponding gate is >0.
        Args:
        gates: a `Tensor` of shape [batch_size, n]
        Returns:
        a float32 `Tensor` of shape [n]
        """
        return (gates > 0).sum(0)

    def _prob_in_top_k(
        self, clean_values, noisy_values, noise_stddev, noisy_top_values
    ):
        """Helper function to NoisyTopKGating.
        Computes the probability that value is in top k, given different random noise.
        This gives us a way of backpropagating from a loss that balances the number
        of times each expert is in the top k experts per example.
        In the case of no noise, pass in None for noise_stddev, and the result will
        not be differentiable.
        Args:
        clean_values: a `Tensor` of shape [batch, n].
        noisy_values: a `Tensor` of shape [batch, n].  Equal to clean values plus
          normally distributed noise with standard deviation noise_stddev.
        noise_stddev: a `Tensor` of shape [batch, n], or None
        noisy_top_values: a `Tensor` of shape [batch, m].
           "values" Output of tf.top_k(noisy_top_values, m).  m >= k+1
        Returns:
        a `Tensor` of shape [batch, n].
        """

        batch = clean_values.size(0)
        m = noisy_top_values.size(1)
        top_values_flat = noisy_top_values.flatten()
        threshold_positions_if_in = (
            torch.arange(batch, device=clean_values.device) * m + self.top_k
        )
        threshold_if_in = torch.unsqueeze(
            torch.gather(top_values_flat, 0, threshold_positions_if_in), 1
        )
        is_in = torch.gt(noisy_values, threshold_if_in)
        threshold_positions_if_out = threshold_positions_if_in - 1
        threshold_if_out = torch.unsqueeze(
            torch.gather(top_values_flat, 0, threshold_positions_if_out), 1
        )
        # is each value currently in the top k.
        normal = Normal(
            torch.tensor([0.0], device=clean_values.device),
            torch.tensor([1.0], device=clean_values.device),
        )
        prob_if_in = normal.cdf((clean_values - threshold_if_in) / noise_stddev)
        prob_if_out = normal.cdf((clean_values - threshold_if_out) / noise_stddev)
        prob = torch.where(is_in, prob_if_in, prob_if_out)
        return prob

    def cv_squared(self, x):
        """The squared coefficient of variation of a sample.
        Useful as a loss to encourage a positive distribution to be more uniform.
        Epsilons added for numerical stability.
        Returns 0 for an empty Tensor.
        Args:
        x: a `Tensor`.
        Returns:
        a `Scalar`.
        """
        eps = 1e-10
        # if only num_expert = 1
        if x.shape[0] == 1:
            return torch.Tensor([0])
        return x.float().var() / (x.float().mean() ** 2 + eps)

    def forward(self, inp):
        clean_logits = inp @ self.w_gate
        raw_noise_stddev = inp @ self.w_noise
        noise_stddev = (
            self.softplus(raw_noise_stddev) + self.noise_epsilon
        ) * self.training
        noisy_logits = clean_logits + (torch.randn_like(clean_logits) * noise_stddev)
        logits = noisy_logits

        # calculate topk + 1 that will be needed for the noisy gates
        top_logits, top_indices = logits.topk(
            min(self.top_k + 1, self.tot_expert), dim=1
        )
        top_k_logits = top_logits[:, : self.top_k]
        top_k_indices = top_indices[:, : self.top_k]
        top_k_gates = self.softmax(top_k_logits)

        zeros = torch.zeros_like(logits, requires_grad=True)
        gates = zeros.scatter(1, top_k_indices, top_k_gates)

        if self.top_k < self.tot_expert:
            load = (
                self._prob_in_top_k(
                    clean_logits, noisy_logits, noise_stddev, top_logits
                )
            ).sum(0)
        else:
            load = self._gates_to_load(gates)

        importance = gates.sum(0)
        loss = self.cv_squared(importance) + self.cv_squared(load)
        self.set_loss(loss)

        return (
            top_k_indices.contiguous().view(-1),
            top_k_gates.contiguous().unsqueeze(1),
        )