wt103_large_tpu.sh 3.54 KB
Newer Older
Zhilin Yang's avatar
init  
Zhilin Yang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#!/bin/bash

# Path
LOCAL_DIR=../data/wikitext-103/
GSDATA=
GSEXP=

# TPU setting
NUM_HOST=4
NUM_CORE=16 # TPUv2 -> 8 | TPUv3 -> 16

TEST_NUM_HOST=1
TEST_NUM_CORE=8 # TPUv2 -> 8 | TPUv3 -> 16

# Model
DIV_VAL=4
N_LAYER=18
D_MODEL=1024
D_EMBED=1024
N_HEAD=16
D_HEAD=64
D_INNER=4096

# Training
TGT_LEN=384
MEM_LEN=384
TRAIN_BSZ=128
Alex Ilchenko's avatar
Alex Ilchenko committed
28
VALID_BSZ=128
Zhilin Yang's avatar
init  
Zhilin Yang committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

# Testing
TEST_TGT_LEN=128
TEST_MEM_LEN=1600
TEST_CLAMP_LEN=1000
TEST_BSZ=8

if [[ $1 == 'train_data' ]]; then
    python data_utils.py \
        --data_dir=${LOCAL_DIR}/ \
        --dataset=wt103 \
        --tgt_len=${TGT_LEN} \
        --per_host_train_bsz=${TRAIN_BSZ} \
        --per_host_valid_bsz=${VLIDA_BSZ} \
        --num_core_per_host=${NUM_CORE} \
        --num_passes=10 \
        --use_tpu=True \
        ${@:2}

    SRC_PATTERN=train.bsz-${TRAIN_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
    gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/

    SRC_PATTERN=valid.bsz-${VALID_BSZ}.tlen-${TGT_LEN}.core-${NUM_CORE}*
    gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/

elif [[ $1 == 'test_data' ]]; then
    python data_utils.py \
        --data_dir=${LOCAL_DIR}/ \
        --dataset=wt103 \
        --tgt_len=${TEST_TGT_LEN} \
        --per_host_test_bsz=${TEST_BSZ} \
        --num_core_per_host=${TEST_NUM_CORE} \
        --num_passes=1 \
        --use_tpu=True \
        ${@:2}

    SRC_PATTERN=test.bsz-${TEST_BSZ}.tlen-${TEST_TGT_LEN}.core-${TEST_NUM_CORE}*
    gsutil cp ${LOCAL_DIR}/tfrecords/${SRC_PATTERN} ${GSDATA}/wt103-tfrecords/

elif [[ $1 == 'train' ]]; then
    echo 'Run training...'
    python train.py \
        --data_dir=${GSDATA}/wt103-tfrecords \
        --record_info_dir=${LOCAL_DIR}/tfrecords/ \
        --corpus_info_path=${LOCAL_DIR}/corpus-info.json \
        --model_dir=${GSEXP}/wt103 \
        --div_val=${DIV_VAL} \
        --untie_r=True \
        --proj_share_all_but_first=True \
        --proj_same_dim=True \
        --n_layer=${N_LAYER} \
        --d_model=${D_MODEL} \
        --d_embed=${D_EMBED} \
        --n_head=${N_HEAD} \
        --d_head=${D_HEAD} \
        --d_inner=${D_INNER} \
        --dropout=0.2 \
        --dropatt=0.2 \
        --init_std=0.005 \
        --learning_rate=0.00025 \
        --warmup_steps=16000 \
        --train_steps=4000000 \
        --tgt_len=${TGT_LEN} \
        --mem_len=${MEM_LEN} \
        --train_batch_size=${BSZ} \
        --num_hosts=${NUM_HOST} \
        --num_core_per_host=${NUM_CORE} \
        --iterations=1000 \
        --save_steps=10000 \
        --use_tpu=True \
        --do_eval=False \
        ${@:2}

elif [[ $1 == 'eval' ]]; then
    echo 'Run evaluation...'
    python train.py \
        --data_dir=${GSDATA}/wt103-tfrecords \
        --record_info_dir=${LOCAL_DIR}/tfrecords/ \
        --corpus_info_path=${LOCAL_DIR}/corpus-info.json \
        --model_dir=${GSEXP}/wt103 \
        --div_val=${DIV_VAL} \
        --untie_r=True \
        --proj_share_all_but_first=True \
        --proj_same_dim=True \
        --n_layer=${N_LAYER} \
        --d_model=${D_MODEL} \
        --d_embed=${D_EMBED} \
        --n_head=${N_HEAD} \
        --d_head=${D_HEAD} \
        --d_inner=${D_INNER} \
        --tgt_len=${TEST_TGT_LEN} \
        --mem_len=${TEST_MEM_LEN} \
        --clamp_len=${TEST_CLAMP_LEN} \
        --same_length=True \
        --eval_batch_size=${TEST_BSZ} \
        --num_host=${TEST_NUM_HOST} \
        --num_core_per_host=${TEST_NUM_CORE} \
        --use_tpu=True \
        --do_train=False \
        --do_eval_only=True \
        --eval_split=test \
        ${@:2}

else
    echo 'unknown argment 1'
fi