torch2flm.py 7.06 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import struct
import numpy as np
import torch

def writeString(fo, s):
    fo.write(struct.pack('i', len(s)))
    fo.write(s.encode())

def writeKeyValue(fo, key, value):
    writeString(fo, key)
    writeString(fo, value)

fastllm_data_type_dict = {
    "int4": 8,
    "int8": 3,
    "float16": 7,
    "float32": 0,
}
fastllm_weight_type_dict = {
    "linear": 1,
    "embedding": 2
}

v = np.random.randint(-127, 127, [10, 20])
temp = v
c_max = np.expand_dims(np.abs(v).max(axis = -1), -1)
c_scale = c_max / 127.0
v = (v / c_scale + 128.5).clip(1, 255).astype(np.uint8)

def write_int8(fo, v):
    c_max = np.expand_dims(np.abs(v).max(axis = -1), -1).clip(0.1, 1e100)
    c_scale = c_max / 127.0
    v = (v / c_scale + 128.5).clip(1, 255).astype(np.uint8)
    fo.write(struct.pack('i', 3))
    fo.write(struct.pack('i', 0))
    for i in range(c_max.shape[0]):
        fo.write(struct.pack('f', -c_max[i][0]))
        fo.write(struct.pack('f', c_max[i][0]))
    fo.write(v.data)

def write_int4(fo, v):
    c_min = np.expand_dims(-np.abs(v).max(axis = -1), -1)
    c_max = np.expand_dims(np.abs(v).max(axis = -1), -1)
    c_scale = c_max / 7.0
    c_min = c_scale * -8.0
    v = (v - c_min) / c_scale
    v = (v + 0.5).astype(np.int8).clip(0, 15).astype(np.uint8)
    v = v[:, 0::2] * 16 + v[:, 1::2]
    fo.write(struct.pack('i', 8))
    fo.write(struct.pack('i', 0))
    for i in range(c_min.shape[0]):
        fo.write(struct.pack('f', c_min[i][0]))
        fo.write(struct.pack('f', c_max[i][0]))
    fo.write(v.data)

def tofile(exportPath,
           model,
           tokenizer = None,
           pre_prompt = None,
           user_role = None,
           bot_role = None,
           history_sep = None,
           dtype = "float16"):
    if (dtype not in fastllm_data_type_dict):
        print("dtype should in ", list(fastllm_data_type_dict.keys()))
        exit(0)

    dict = model.state_dict()
    fo = open(exportPath, "wb")

    # 0. version id
    fo.write(struct.pack('i', 2))

    # 0.1 model info
    modelInfo = model.config.__dict__
    if model.generation_config is not None:
        modelInfo.update(model.generation_config.__dict__)
    if ("model_type" not in modelInfo):
        print("unknown model_type.")
        exit(0)

    if (pre_prompt):
        modelInfo["pre_prompt"] = pre_prompt
    if (user_role):
        modelInfo["user_role"] = user_role
    if (bot_role):
        modelInfo["bot_role"] = bot_role
    if (history_sep):
        modelInfo["history_sep"] = history_sep
    if (modelInfo["model_type"] == "baichuan" and hasattr(model, "model") and hasattr(model.model, "get_alibi_mask")):
        # Baichuan 2代
        modelInfo["use_alibi"] = "1"
        modelInfo["pre_prompt"] = ""
        modelInfo["user_role"] = ("<FLM_FIX_TOKEN_" + str(model.generation_config.user_token_id) + "> ") if hasattr(model.generation_config, "user_token_id") else ""
        modelInfo["bot_role"] = ("<FLM_FIX_TOKEN_" + str(model.generation_config.assistant_token_id) + ">") if hasattr(model.generation_config, "assistant_token_id") else ""
        modelInfo["history_sep"] = ""
    if modelInfo["model_type"] == "qwen":
        if modelInfo["chat_format"] == "chatml":
            modelInfo["im_end_id"] = tokenizer.im_end_id
            modelInfo["im_start_id"] = tokenizer.im_start_id

    modelInfo["tokenizer_use_score"] = "1" # 分词带分数

    if hasattr(model, "peft_config"):
        adapter_size = len(model.peft_config)
        modelInfo["peft_size"] = adapter_size

    fo.write(struct.pack('i', len(modelInfo)))
    for it in modelInfo.keys():
        writeKeyValue(fo, str(it), str(modelInfo[it]))

    if hasattr(model, "peft_config"):
        for adapter_name in model.peft_config.keys():
            adapter_dict = model.peft_config[adapter_name].__dict__
            writeString(fo, adapter_name)
            fo.write(struct.pack('i', len(adapter_dict)))
            for it in adapter_dict.keys():
                writeKeyValue(fo, str(it), str(adapter_dict[it]))

    # 1. vocab
    if (tokenizer):
        if (hasattr(tokenizer, "tokenizer")):
            if (modelInfo['model_type'] == "qwen"):
                pass
            else:
                tokenizer = tokenizer.tokenizer
        if (hasattr(tokenizer, "sp_model")):
            piece_size = tokenizer.sp_model.piece_size()
            fo.write(struct.pack('i', piece_size))
            for i in range(piece_size):
                s = tokenizer.sp_model.id_to_piece(i).encode()
                fo.write(struct.pack('i', len(s)))
                for c in s:
                    fo.write(struct.pack('i', c))
                fo.write(struct.pack('i', i))
                fo.write(struct.pack('f', float(tokenizer.sp_model.get_score(i))))
        else:
            vocab = tokenizer.get_vocab()
            fo.write(struct.pack('i', len(vocab)))
            for v in vocab.keys():
                if (modelInfo['model_type'] == "qwen"):
                    s = v
                else:
                    s = v.encode()
                if (modelInfo["model_type"] == "moss"):
                    s = [(ord(c) if c not in tokenizer.byte_decoder else tokenizer.byte_decoder[c]) for c in v]
                fo.write(struct.pack('i', len(s)))
                for c in s:
                    fo.write(struct.pack('i', c))
                fo.write(struct.pack('i', vocab[v]))
                fo.write(struct.pack('f', 1.0))
    else:
        fo.write(struct.pack('i', 0))

    weight_type_dict = {}
    module_dict = {}
    for key, m in model.named_modules():
        if (isinstance(m, torch.nn.Linear)):
            weight_type_dict[key + ".weight"] = "linear"
            module_dict[key + ".weight"] = m
        if (isinstance(m, torch.nn.Embedding)):
            weight_type_dict[key] = "embedding"

    # 2. weight
    fo.write(struct.pack('i', len(dict)))
    tot = 0
    for key in dict:
        ori_data_type = 0
        ori_np_data_type = np.float32
        cur_weight_type = 0
        if (key in weight_type_dict and weight_type_dict[key] in fastllm_weight_type_dict):
            cur_weight_type = fastllm_weight_type_dict[weight_type_dict[key]]
        to_data_type = 0
        if (cur_weight_type == 1):
            to_data_type = fastllm_data_type_dict[dtype]
            if (to_data_type == 7):
                ori_data_type = 7
                ori_np_data_type = np.float16

        cur = dict[key].numpy().astype(ori_np_data_type)
        
        if hasattr(model, "peft_config"):
            weight_name = key.replace('base_model.model.', '')
            fo.write(struct.pack('i', len(weight_name)))
            fo.write(weight_name.encode())
        else:
            fo.write(struct.pack('i', len(key)))
            fo.write(key.encode())
        fo.write(struct.pack('i', len(cur.shape)))
        for i in cur.shape:
            fo.write(struct.pack('i', i))
        if (to_data_type == 3):
            write_int8(fo, cur)
        elif (to_data_type == 8):
            write_int4(fo, cur)
        else:
            fo.write(struct.pack('i', to_data_type))
            fo.write(cur.data)
        tot += 1
        print("output (", tot, "/", len(dict), end = " )\r")
    print("\nfinish.")
    fo.close()