"src/targets/vscode:/vscode.git/clone" did not exist on "0eeb05f74b2687447d26a7d7f1141c6912d33d4a"
baichuan.py 3.27 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import torch
import numpy as np
import argparse
from CMMLU.src.mp_utils import choices, format_example, gen_prompt, softmax, run_eval

from peft import PeftModel
from transformers import LlamaForCausalLM, LlamaTokenizer
from transformers import AutoModelForCausalLM, AutoTokenizer

def eval(model, tokenizer, subject, dev_df, test_df, num_few_shot, max_length, cot):
    choice_ids = [tokenizer.convert_tokens_to_ids(choice) for choice in choices]
    cors = []
    all_conf = []
    all_preds = []
    answers = choices[: test_df.shape[1] - 2]

    for i in range(test_df.shape[0]):
        prompt_end = format_example(test_df, i, subject, include_answer=False)
        prompt = gen_prompt(dev_df=dev_df,
                            subject=subject,
                            prompt_end=prompt_end,
                            num_few_shot=num_few_shot,
                            tokenizer=tokenizer,
                            max_length=max_length)
        label = test_df.iloc[i, test_df.shape[1] - 1]
        logits = model.response_logits(prompt, tokenizer = tokenizer);
        sel = 0;
        for j in range(4):
            if (logits[choice_ids[j]] > logits[choice_ids[sel]]):
                sel = j;
        pred = choices[sel];
        conf = [logits[choice_ids[j]] for j in range(4)]
        all_preds += pred
        all_conf.append(conf)
        cors.append(pred == label)
        print(i, np.mean(cors))

    acc = np.mean(cors)
    print("Average accuracy {:.3f} - {}".format(acc, subject))
    return acc, all_preds, all_conf


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_name_or_path", type=str, default="")
    parser.add_argument("--lora_weights", type=str, default="")
    parser.add_argument("--data_dir", type=str, default="./CMMLU/data")
    parser.add_argument("--save_dir", type=str, default="../results/not_specified")
    parser.add_argument("--num_few_shot", type=int, default=0)
    parser.add_argument("--max_length", type=int, default=2048)
    parser.add_argument("--load_in_8bit", action='store_true')
    parser.add_argument("--dtype", type=str, default="float16")
    parser.add_argument("--with_conf", action='store_true')
    parser.add_argument("--cot", action='store_true')
    args = parser.parse_args()

    # TODO: better handle
    tokenizer_class = LlamaTokenizer if 'llama' in args.model_name_or_path else AutoTokenizer
    model_class = LlamaForCausalLM if 'llama' in args.model_name_or_path else AutoModelForCausalLM
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path, trust_remote_code=True)
    model = model_class.from_pretrained(args.model_name_or_path,
                                        trust_remote_code=True,
                                        load_in_8bit=args.load_in_8bit,
                                        torch_dtype=torch.float16,
                                        device_map="cpu"
                                        )
    if args.lora_weights != "":
        model = PeftModel.from_pretrained(
            model,
            args.lora_weights,
            torch_dtype=torch.float16,
        )

    from fastllm_pytools import llm;
    model = llm.from_hf(model, tokenizer, dtype = args.dtype);
    model.direct_query = True;

    run_eval(model, tokenizer, eval, args)