fastllm.h 16.4 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
//
// Created by huangyuyang on 5/11/23.
//

#ifndef TEST_FASTLLM_H
#define TEST_FASTLLM_H

#include <vector>
#include <cstdint>
#include <string>
#include <map>
#include <set>
#include <queue>
#include <unordered_map>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <functional>
#include <memory>
#include "devices/cpu/cputhreadpool.h"

namespace fastllm {
    void SetDeviceMap(const std::map <std::string, int> &deviceMap);
    std::map <std::string, int> GetDeviceMap();
    void PrintInstructionInfo();
    void SetThreads(int t);
    void SetLowMemMode(bool m);
    void SetKVCacheInCPU(bool kvCacheInCPU);
    bool GetLowMemMode();
    int GetThreads();
    bool GetKVCacheInCPU();
    ThreadPool *GetPool();

    struct GenerationConfig {
        int output_token_limit = -1; // 最多输出多少, <= 0代表无限制
        int last_n = 64; // 末尾last_n个token计入重复惩罚
        float repeat_penalty = 1.0f; // 重复惩罚系数,1.0代表不惩罚
        int top_k = 1; // top_k采样
        float top_p = 1.0; // top_p采样
        float temperature = 1.0; // 温度参数,一般在0.1 ~ 1.0之间,设大这个参数可以带来结果的多样性
        bool output_logits = false; // 是否返回logits
		bool enable_hash_id = false; // 给会话添加hash id


        bool IsSimpleGreedy() const {
            if (fabs(repeat_penalty - 1) > 1e-8) {
                return false;
            }
            if (top_k > 1) {
                return false;
            }
            return true;
        }
    };

    struct LastTokensUnit {
        int tot = 0;
        std::multiset <int> tokenSet;
        std::queue <int> tokenQueue;

        LastTokensUnit () {}

        LastTokensUnit (int tot) {
            Init(tot);
        }

        void Init(int tot) {
            this->tot = tot;
            tokenSet.clear();
            while (tokenQueue.size() > 0) {
                tokenQueue.pop();
            }
        }

        void Push(int id) {
            if (tokenQueue.size() == tot) {
                tokenSet.erase(tokenSet.find(tokenQueue.front()));
                tokenQueue.pop();
            }
            tokenQueue.push(id);
            tokenSet.insert(id);
        }
    };

    struct LastTokensManager {
        std::vector <LastTokensUnit> units;

        LastTokensManager () {}

        LastTokensManager (int batch, int lastN) {
            units.resize(batch);
            for (int i = 0; i < batch; i++) {
                units[i].Init(lastN);
            }
        }
    };

    struct LowBitConfig {
        int bit;
        float min, max;
        uint8_t zeroPoint;
        float scale;
        int type; // 0: 有zero点 1: 不需要zero点

        LowBitConfig(float min, float max, int bit, int type) {
            this->min = min;
            this->max = max;
            this->bit = bit;
            this->type = type;
            Reset();
        }

        LowBitConfig () {

        }

        void Reset() {
            /*if (type == 1) {
                this->scale = (max - min) / 15.0;
                return;
            }*/
            /*if (type == 1) {
                this->scale = std::max(fabs(max), fabs(min)) / 7.0;
                this->min = this->scale * (-7.0);
                return;
            }*/
            min = std::min(min, 0.f);
            max = std::max(max, 0.f);

            const float qmin = 0;
            const float qmax = (1 << bit) - 1;
            scale = (max - min) / (qmax - qmin);
            const float initial_zero_point = qmin - min / scale;
            zeroPoint = 0;
            if (initial_zero_point < qmin) {
                zeroPoint = qmin;
            } else if (initial_zero_point > qmax) {
                zeroPoint = qmax;
            } else {
                zeroPoint = static_cast<uint8_t>(std::round(initial_zero_point));
            }

            if (type == 1) {
                this->min = -this->scale * zeroPoint;
                return;
            }
        }

        uint8_t quantization(const float &realNumber) const {
            if (type == 0) {
                return (uint8_t) (std::min((double) ((1 << bit) - 1),
                                           std::max(realNumber / scale + zeroPoint + 0.5, 0.0)));
            } else {
                return (uint8_t) (std::max(0.f, std::min(15.f, (realNumber - min) / scale + 0.5f)));
            }
        }

        float invQuantization(const uint8_t &qNumber) const {
            if (type == 0) {
                return (scale * ((float) qNumber - (float) zeroPoint));
            } else {
                return min + scale * qNumber;
            }
        }
    };

    enum DataType {
        FLOAT32 = 0, BFLOAT16 = 1, INT16 = 2, INT8 = 3, INT4 = 4, INT2 = 5, BIT = 6, FLOAT16 = 7,
        INT4_NOZERO = 8, // 不用zeroPoint的int4, floatValue = min + uint4Value * scale
        INT32PARAM = 100 // int32的参数,这种类型的数据永远存在CPU上
    };

    enum DataDevice {
        CPU = 0, CUDA = 1
    };

    enum WeightType {
        NONE = 0, LINEAR = 1, EMBEDDING = 2
    };

    struct FileMmap {
    public:
        FileMmap(const std::string &path);
        ~FileMmap();

        char *data;
        size_t size;
    };

    struct ModelLoader {
        ModelLoader(const char *buffer, size_t size) : data(buffer), size(size), ptr(buffer) {}

        int64_t tell() const { return ptr - data; }

        void seek(int64_t offset, int whence);

        template <typename T>
        T read_basic() {
            T obj = *(T *)ptr;
            ptr += sizeof(T);
            return obj;
        }

        std::string ReadString();
        int ReadInt();
        float ReadFloat();
        uint8_t* ReadBytes(uint64_t bytes);

        const char *const data;
        size_t size;
        const char *ptr;
    };

    class Data {
    public:
        bool lockInCPU = false; // 如果lock在CPU上,那么不允许移动到其余设备
        WeightType weightType = WeightType::NONE; // 权重类型,NONE代表非权重(或未知权重)

        DataType dataType = DataType::FLOAT32; // 数据类型
        int unitSize, unitSizeDiv = 1; // 单个元素的字节数 = unitSIze / unitSizeDiv

        std::vector <int> dims; // 数据形状
        std::vector <uint64_t> strides; // 跨度

        uint64_t expansionSize = 0; // 扩容后的尺寸
        uint64_t expansionBytes = 0; // 扩容后的字节数
        std::vector <int> expansionDims; // 预扩容的形状
        uint8_t *cpuData = nullptr; // 数据指针

	    void *cudaData = nullptr;
        std::vector <void*> extraCudaData;

        void *deviceData = nullptr;
        std::vector <void*> extraDeviceData;

        DataDevice dataDevice = DataDevice::CPU;
        std::vector <int> dataDeviceIds;

        // 这两个参数用于量化,对FLOAT数据不适用
        int perChannelAxis = -1; // 沿哪个轴分通道量化,-1代表没有分通道
        std::vector <LowBitConfig> perChannelsConfigs; // perChannelsConfigs[i]代表第i个通道的min, max; 如果没有分通道,perChannelsConfigs[0]代表全局min, max
        std::vector <float> scales, mins;
        std::vector <int> zeros;
        std::vector <int> weightSum; // 作为权重时,有时候需要存一些和加速计算

        std::string fileName;
        long long filePos;
        std::shared_ptr<FileMmap> m_file;

        Data () {};

        Data (DataType type);

        Data (DataType type, const std::vector <int> &dims); // 构造函数

        // 构造函数,创建好之后从data复制数据
        // data中是原始数据,如果type不是float那么需要量化
        Data (DataType type, const std::vector <int> &dims, const std::vector <float> &data);

        ~Data(); // 析构函数

        Data (const Data &ori); // 深拷贝

        void CopyFrom(const Data &ori); // 复制

        uint64_t GetBytes() const; // 获取总字节数

        void Allocate(); // 分配内存

        void Allocate(float v); // 分配内存并初始化

        void Expansion(const std::vector <int> &dims); // 预扩容到相应尺寸

        void MallocSpace(uint64_t size); // 在设备上分配

        void FreeSpace(); // 回收设备上的内存

        void UpdateUnitSize(); // 更新unitSize

        void Resize(const std::vector <int> &dims); // 更改尺寸

        void Reshape(const std::vector <int> &dims); // 更改尺寸,但不修改数据

        uint64_t Count(int i) const; // dims[i] * strides[i]

        void PrintShape() const; // 输出形状

        void Print() const; // 输出

        void CalcWeightSum(); // 计算WeightSum

        void ToDevice(DataDevice device); // 移动到指定device

        void ToDevice(DataDevice device, const std::vector <int> &deviceIds); // 移动到指定device

        void ToDevice(void *device);

        void set_file(std::shared_ptr<FileMmap> file) {
            m_file = file;
        }
    };

    struct Tokenizer {
        enum TokenizerType {
            BPE = 0,
            NORMAL = 1,
            QWEN = 2
        };

        struct TrieNode {
            int tokenId;
            float score;
            std::map <int, TrieNode*> next;
            TrieNode();
        };
        struct Symbol {
            TrieNode *node;
            char *s;
            int pos, len;
            int prev, next;
            int fixId;

            Symbol (Tokenizer::TrieNode *node,
                    char *s, int pos, int len,
                    int prev, int next, int fixId) {
                this->node = node;
                this->s = s;
                this->pos = pos;
                this->len = len;
                this->prev = prev;
                this->next = next;
                this->fixId = fixId;
            }
        };
        struct SymbolPairs {
            float score;
            int l, r, size;

            SymbolPairs(float score, int l, int r, int size) {
                this->score = score;
                this->l = l;
                this->r = r;
                this->size = size;
            }
        };

        friend bool operator < (const SymbolPairs &a, const SymbolPairs &b) {
            return a.score < b.score || (a.score == b.score && a.l > b.l);
        }

        TrieNode *root;

        TokenizerType type = TokenizerType::BPE;

        std::unordered_map <int, std::string> tokenToStringDict;
        std::unordered_map <int, float> tokenToScoreDict;
        std::unordered_map <std::string, int> stringToTokenDict;

        Tokenizer ();

        ~Tokenizer();

        void Clear(); // 清空分词器

        void TryMergePairs(std::vector<Symbol> &symbols, int l, int r, std::priority_queue <SymbolPairs> &q); // 插入备选symbol

        void Insert(const std::string &s, int tokenId, float score = 1.0f); // 插入一个token

        Data Encode(const std::string &s); // 编码

        std::string Decode(const Data &data); // 解码

        std::string DecodeTokens(const std::vector <int> &tokens); // 解码
    };

    std::string GetModelTypeFromFile(const std::string &fileName);

    struct WeightMap {
        int versionId = 2;

        Tokenizer tokenizer;

        std::map <std::string, std::string> dicts;

        std::map <std::string, Data> weight;

        std::map <std::string, std::map <std::string, std::string>> peftDict;

        std::set <std::string> embeddingNames;

        void LoadFromFile(const std::string &fileName); // 从文件读取

        void SaveLowBitModel(const std::string &fileName, int bit); // 存储成量化模型, bit = 0代表直接存

        void AddTokenizerWord(const std::string &key, int value, float score); // 增加一个词

        void AddDict(const std::string &key, const std::string &value); // 插入一个词条

        void AddAdapterDict(const std::string &name, const std::string &key, const std::string &value);

        void AddWeight(const std::string &key, const std::vector <int> &dims,
                       DataType dataType, WeightType weightType, DataType oriDataType, uint8_t *oriData); // 插入一个权重

        void AddQLinearWeight(const std::string &key, const std::vector <int> &dims,
                              int bit, float *scales, uint8_t *oriData); // 插入一个Qlinear层的权重,量化规则为float value = scales * oriData

        Data &operator [] (const std::string &key);
    };

    void ClearProfiler();

    void PrintProfiler();

    void ApplyDeviceMap(const std::map <std::string, int> &deviceMap, int current, int total); // 执行到了current, 一共total,使用deviceMap切换设备

    int LLMSampling(Data &logits, int outerOffset,
                    const GenerationConfig &config, const LastTokensUnit &tokens); // 对logits里[outerOffset * vocabSize, (outerOffset + 1) * vocabSize]做Sampling

    void ToDataType(const Data &input, DataType dataType);

    void Attention(const Data &q, const Data &k, const Data &v, const Data &mask, Data &output,
                   int group, float scale, int attentionType);

    void Embedding(const Data &input, Data &weight, Data &output);

    void RMSNorm(const Data &input, const Data &weight, float eps, Data &output);

    void LayerNorm(Data &input, Data &gamma, Data &beta, int axis, Data &output);

    void Linear(Data &input, Data &weight, const Data &bias, Data &output);

    void Split(const Data &input, int axis, int start, int end, Data &output);

    void Cat(const Data &input0, const Data &input1, int axis, Data &output);

	void CatDirect(Data &input0, const Data &input1, int axis); // 直接把input1的数据拷贝到input0后面(需要input0提前扩容了足够的空间)

    void MatMul(const Data &input0, const Data &input1, Data &output, float alpha = 1.0);

    void MatMulTransB(const Data &input0, const Data &input1, Data &output, float alpha = 1.0);

    void Softmax(const Data &input, Data &output, int axis);

    void Silu(const fastllm::Data &input, fastllm::Data &output);

    void GeluNew(const Data &input, Data &output);

    void Swiglu(const fastllm::Data &input, fastllm::Data &output);

    void Mul(const Data &input, float v, Data &output);

    void MulTo(Data &input0, const Data &input1); // input0 *= input1

    void AddTo(Data &input0, const Data &input1, float alpha = 1.0); // input0 += input1 * alpha

    void AttentionMask(Data &input, const Data &mask, float maskValue); // 把input里对应位置mask中为1的部分变成maskValue

    void AlibiMask(Data &input, const Data &mask, float maskValue); // alibi mask

    void Permute(const Data &input, const std::vector<int> &axis, Data &output); // 转置

    void PermuteSelf(const Data &input, const std::vector<int> &axis); // 转置

    void TopK(const Data &input, Data &output, int topK); // 求topk

    void RotatePosition2D(Data &input, const Data &positionIds, Data &sinData, Data &cosData, int rotaryDim); // 2D position

    void NearlyRotatePosition2D(Data &input, const Data &positionIds, Data &sinData, Data &cosData, int rotaryDim); // 2D position, 相邻的元素旋转

    void LlamaRotatePosition2D(Data &input, const Data &positionIds, Data &sinData, Data &cosData, int rotaryDim); // 2D position for llama

    void RepeatPenalty(Data &input, const Data &penalty); // 惩罚,input[i] = input[i] < 0 ? input[i] * penalty[i] : input[i] / penalty[i];

    void ApplyLognAttn(Data &input, const Data &lognAttn, const Data &positionIds);

    void MulBatch(std::vector <Data*> &input, float v, std::vector <Data*> &output);

    void SplitBatch(const Data &input, int axis, int part, std::vector <Data*> &outputs); // 将input沿着axis轴切开,每份axis上的尺寸为1,放到outputs里

    void CatBatch(std::vector <Data*> &input, int axis, Data &outputs); // 将input沿着axis轴合起来,每份axis上的尺寸为1,放到output里

    void MatMulBatch(std::vector <Data*> &input0, std::vector <Data*> &input1, std::vector <Data*> &output, float alpha = 1.0);

    void MatMulTransBBatch(std::vector <Data*> &input0, std::vector <Data*> &input1, std::vector <Data*> &output, float alpha = 1.0);

    void SoftmaxBatch(std::vector <Data*> &input, std::vector <Data*> &output, int axis);

    void CatDirectBatch(std::vector <Data*> &input0, std::vector <Data*> &input1, int axis);

    void LoraLayer(Data &input, Data &weight, Data &loraA, Data &loraB, const Data &bias, Data &output, 
                   std::map <std::string, std::string> loraConfig);

    void IA3Layer(Data &input, Data &weight, Data &ia3_l, Data &bias, Data &output,
                  std::map <std::string, std::string> ia3Config);
}

#endif //TEST_FASTLLM_H