fastllm-openai.py 7.43 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# coding=utf-8
# Implements API for ChatGLM3-6B in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
# Usage: python openai_api.py
# Visit http://localhost:8100/docs for documents.


import time
import json
import torch
import uvicorn
import argparse
from pydantic import BaseModel, Field
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from typing import Any, Dict, List, Literal, Optional, Union
#from transformers import AutoTokenizer, AutoModel
from sse_starlette.sse import ServerSentEvent, EventSourceResponse
from fastllm_pytools import llm


@asynccontextmanager
async def lifespan(app: FastAPI): # collects GPU memory
    yield
    global device_map
    if torch.cuda.is_available():
        for device in device_map: 
            with torch.cuda.device(device):
                torch.cuda.empty_cache()
                torch.cuda.ipc_collect()


app = FastAPI(lifespan=lifespan)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

class ModelCard(BaseModel):
    id: str
    object: str = "model"
    created: int = Field(default_factory=lambda: int(time.time()))
    owned_by: str = "owner"
    root: Optional[str] = None
    parent: Optional[str] = None
    permission: Optional[list] = None


class ModelList(BaseModel):
    object: str = "list"
    data: List[ModelCard] = []


class ChatMessage(BaseModel):
    role: Literal["user", "assistant", "system"]
    content: str

class Usage(BaseModel):
    prompt_tokens: int = None
    total_tokens: int = None
    completion_tokens: int = None

class DeltaMessage(BaseModel):
    role: Optional[Literal["user", "assistant", "system"]] = None
    content: Optional[str] = None


class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    temperature: Optional[float] = None
    top_p: Optional[float] = None
    max_length: Optional[int] = None
    stream: Optional[bool] = False


class ChatCompletionResponseChoice(BaseModel):
    index: int
    message: ChatMessage
    finish_reason: Literal["stop", "length"]


class ChatCompletionResponseStreamChoice(BaseModel):
    index: int
    delta: DeltaMessage
    finish_reason: Optional[Literal["stop", "length"]]


class ChatCompletionResponse(BaseModel):
    id: str
    object: Literal["chat.completion", "chat.completion.chunk"]
    created: Optional[int] = Field(default_factory=lambda: int(time.time()))
    model: str
    choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
    usage: Usage = None


@app.get("/v1/models", response_model=ModelList)
def list_models():
    global model_list
    for model in model_list:
        ModelCard(id=model)
        ModelList.data.append(ModelCard)
    return ModelList()


@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
def create_chat_completion(request: ChatCompletionRequest):
    if request.model not in model_list:
        raise HTTPException(status_code=400, detail="Invalid Model Name")

    global model

    id = "chatcmpl-A"

    if request.messages[-1].role != "user":
        raise HTTPException(status_code=400, detail="Invalid request")
    query = request.messages[-1].content


    if request.max_length is not None:
        max_length = request.max_length
    else:
        max_length = 1024
    
    if request.temperature is not None:
        temperature = request.temperature
    else:
        temperature = 0.1


    if request.top_p is not None:
        top_p = request.top_p
    else:
        top_p = 0.8

    prev_messages = request.messages[:-1]
    # print(prev_messages)
    if len(prev_messages) > 0 and prev_messages[0].role == "system":
        query = prev_messages.pop(0).content + query

    history = []
    if len(prev_messages) % 2 == 0:
        for i in range(0, len(prev_messages), 2):
            if prev_messages[i].role == "user" and prev_messages[i+1].role == "assistant":
                history.append([prev_messages[i].content, prev_messages[i+1].content])
    
    if request.stream:
        generate = predict(id=id, query=query,  history=history, max_length=max_length, top_p = top_p, temperature = temperature, model_id = request.model)
        return EventSourceResponse(generate, media_type="text/event-stream")

    response = model.response(query=query,  history=history, max_length=max_length, top_p = top_p, temperature = temperature)


    choice_data = ChatCompletionResponseChoice(
        index=0,
        message=ChatMessage(role="assistant", content=response),
        finish_reason="stop"
    )

    prompt_tokens = len(model.tokenizer_encode_string(query))
    completion_tokens = len(model.tokenizer_encode_string(response))
    usage = Usage(
        prompt_tokens = prompt_tokens,
        completion_tokens = completion_tokens,
        total_tokens = prompt_tokens+completion_tokens,
    )

    return ChatCompletionResponse(id=id ,model=request.model, choices=[choice_data], object="chat.completion", usage=usage)


def predict(id: str, query: str, history: List[List[str]], model_id: str, max_length: int, top_p: float, temperature: float):
    global model
    creat_time = int(time.time())
    choice_data = ChatCompletionResponseStreamChoice(
        index=0,
        delta=DeltaMessage(role="assistant"),
        finish_reason=None
    )
    chunk = ChatCompletionResponse(id=id, created=creat_time, model=model_id, choices=[choice_data], object="chat.completion.chunk")
    #yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))  //pydantic从1.8.0开始不支持dumps_kwags参数,参考https://github.com/THUDM/ChatGLM2-6B/issues/308
    yield json.dumps(chunk.model_dump(exclude_unset=True), ensure_ascii=False)

    for new_response in model.stream_response(query=query,  history=history, max_length=max_length, top_p = top_p, temperature = temperature):
        choice_data = ChatCompletionResponseStreamChoice(
            index=0,
            delta=DeltaMessage(content=new_response),
            finish_reason=None
        )
        chunk = ChatCompletionResponse(id=id, created=creat_time, model=model_id, choices=[choice_data], object="chat.completion.chunk")
        #yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
        yield json.dumps(chunk.model_dump(exclude_unset=True), ensure_ascii=False)

    choice_data = ChatCompletionResponseStreamChoice(
        index=0,
        delta=DeltaMessage(),
        finish_reason="stop"
    )
    chunk = ChatCompletionResponse(id=id, created=creat_time, model=model_id, choices=[choice_data], object="chat.completion.chunk")
    #yield "{}".format(chunk.json(exclude_unset=True, ensure_ascii=False))
    yield json.dumps(chunk.model_dump(exclude_unset=True), ensure_ascii=False)
    yield '[DONE]'

def args_parser():
    parser = argparse.ArgumentParser(description = 'baichuan2_chat_demo')
    parser.add_argument('-p', '--path', type = str, default = "/model", help = '模型文件的路径')
    parser.add_argument('-g', '--gpus', type = str, default = "0", help = '指定运行的gpu卡,例如“0,1”')
    args = parser.parse_args()
    return args


if __name__ == "__main__":
    args = args_parser()
    global model_list
    model_list = ["chatglm3-6b-fastllm"]
    global device_map
    device_map  = ["cuda:"+num for num in args.gpus.split(',')]
    llm.set_device_map(device_map)
    model = llm.model(args.path)
    uvicorn.run(app, host='127.0.0.1', port=8100)