cppOps.cpp 3.76 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#include "fastllm.h"

void callBaseOp(int optype=0){
    fastllm::Data inputs = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2}, {1, 5});
    fastllm::Data outputs = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2}, {3, 4});

    switch (optype)
    {
    case 0:
        fastllm::AddTo(inputs, outputs, 1);
        break;
    case 1:
        fastllm::Cat(inputs, inputs, 0, outputs);
        break;
    case 2:
        fastllm::Mul(inputs, 2, outputs);
        break;
    case 3:
        fastllm::Permute(inputs, {1, 0}, outputs);
        break;
    case 4:
        fastllm::Split(inputs, 0, 0, 1, outputs);
        break;
    case 5:
        fastllm::Permute(inputs, {1, 0}, outputs);
        fastllm::MatMul(inputs, outputs, outputs);
        break;
    default:
        break;
    } 
    outputs.Print();
}

void callNormOp(int normType=0){
    fastllm::Data inputs = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2}, {1, 5}); 
    fastllm::Data weights = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2}, {1, 2});
    fastllm::Data gamma = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2}, {1, 1});
    fastllm::Data beta = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2}, {0, 0});
    fastllm::Data outputs;

    switch (normType)
    {
    case 0:
        fastllm::LayerNorm(inputs, gamma, beta, -1, outputs);
        break;
    case 1:
        fastllm::RMSNorm(inputs, weights, 1e-5, outputs);
        break;
    default:
        break;
    }
    outputs.Print();
}
    

void callLinearOp(){
    fastllm::Data inputs = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2}, {1, 2}); 
    fastllm::Data weights = fastllm::Data(fastllm::DataType::FLOAT32, {3, 2}, {3, 4, 5, 5, 6, 7});
    fastllm::Data bias = fastllm::Data(fastllm::DataType::FLOAT32, {1, 3}, {0, 1, 1});
    fastllm::Data outputs;
    fastllm::Linear(inputs, weights, bias, outputs);
    outputs.Print();
}

void callActivationOp(int activateType=0){
    fastllm::Data inputs = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2}, {1, 5});
    fastllm::Data outputs;
    switch (activateType)
    {
    case 0:
        fastllm::Silu(inputs, outputs);
        break;
    case 1:
        fastllm::Softmax(inputs, outputs, -1);
        break;
    case 2:
        fastllm::GeluNew(inputs, outputs);
        break;
    case 3:
        fastllm::Swiglu(inputs, outputs);
        break;
    default:
        break;
    }
    outputs.Print();
}

void callAttentionOp(int group=1, int attentionType=0){
    const fastllm::Data q = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2, 3}, {1, 2, 3, 4, 5, 6});
    const fastllm::Data k = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2, 3}, {5, 6, 7, 8, 9, 10});
    const fastllm::Data v = fastllm::Data(fastllm::DataType::FLOAT32, {1, 2, 3}, {1, 1, 1, 2, 1, 3});
    const fastllm::Data mask = fastllm::Data();
    int dims = q.dims.back();
    float scale = 1/sqrt(dims);
    fastllm::Data output;

    fastllm::Attention(q, k, v, mask, output, group, scale, attentionType);
}

void testBase(){
    printf("testing BaseOp...\n");
    for (int i=0;i<6;i++){
        callBaseOp(i);
    }
    printf("test BaseOp finished!\n");
}

void testActivation(){
    printf("testing ActivationOp...\n");
    for (int i=0;i<4;i++){
        callActivationOp(i);
    }
    printf("test ActivationOp finished!\n");
}

void testAttention(){
    printf("testing AttentionOp...\n");
    callAttentionOp();
    printf("test AttentionOp finished!\n");
}

void testLinaer(){
    printf("testing LinearOp...\n");
    callLinearOp();
    printf("test LinearOp finished!\n");
}

void testNorm(){
    printf("testing NormOp...\n");
    for (int i=0;i<2;i++){
        callNormOp(i);
    }
    printf("test NormOp finished!\n");
}

void testAll(){
    testBase();
    testActivation();
    testAttention();
    testNorm();
    testLinaer();
}


int main(){
    testAll();
}