"llm/git@developer.sourcefind.cn:orangecat/ollama.git" did not exist on "217903ab5111124041b3bb9d7a04d9101f2f32b2"
basellm.cpp 31.3 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
//
// Created by huangyuyang on 6/25/23.
//

#include "basellm.h"
#include "utils.h"
#include <sstream>
8
#include <cstring>
zhouxiang's avatar
zhouxiang committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

#ifdef USE_CUDA
#include "fastllm-cuda.cuh"
#endif

namespace fastllm {
    int ResponseContextDict::CreateHandle() {
        locker.lock();
        int newId = 0;
        while (dicts.find(newId) != dicts.end()) {
            newId++;
        }
        dicts[newId] = new ResponseContext();
        locker.unlock();
        return newId;
    }

    ResponseContext *ResponseContextDict::GetHandle(int handleId) {
        locker.lock();
        ResponseContext *ret = dicts.find(handleId) != dicts.end() ? dicts[handleId] : nullptr;
        locker.unlock();
        return ret;
    }

    void ResponseContextDict::RemoveHandle(int handleId) {
        locker.lock();
        if (dicts.find(handleId) != dicts.end()) {
            delete dicts[handleId];
            dicts.erase(handleId);
        }
        locker.unlock();
    }

    void ResponseContext::Init(int blocks) {
        pastKeyValues.clear();
        for (int i = 0; i < blocks; i++) {
            pastKeyValues.push_back(std::make_pair(Data(DataType::FLOAT32),
                                                   Data(DataType::FLOAT32)));
        }
        intParams.clear();
        currentTokens.clear();
        while (resultTokenQueue.size() > 0){
            resultTokenQueue.pop();
        }
        isEnding = false;
        preTokens = 0;
    }
    
    std::string basellm::Response(const std::string &input, RuntimeResult retCb,
                                  const fastllm::GenerationConfig &generationConfig) {
#ifdef USE_CUDA
        FastllmCudaClearBigBuffer();
#endif
        std::string prompt = input;
#ifdef PY_API
64
65
        size_t pos = input.rfind("time_stamp:");
        prompt = (generationConfig.enable_hash_id && pos != -1) ? input.substr(0, pos) : input;
zhouxiang's avatar
zhouxiang committed
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
        size_t hash_id = std::hash<std::string>{}(input);
#endif
        Data inputIds, attentionMask, positionIds;

        Data inputTokenData = this->weight.tokenizer.Encode(prompt);
        std::vector<std::vector<float> > inputTokens;
        inputTokens.resize(1);
        for (int i = 0; i < inputTokenData.Count(0); i++) {
            inputTokens[0].push_back(((float *) inputTokenData.cpuData)[i]);
        }
        std::vector<std::pair<Data, Data> > pastKeyValues;
        for (int i = 0; i < block_cnt; i++) {
            pastKeyValues.push_back(std::make_pair(Data(DataType::FLOAT32),
                                                   Data(DataType::FLOAT32)));
        }

        std::string retString = "";
        std::vector<float> results;
        LastTokensManager tokens(1, generationConfig.last_n);
        int promptLen = inputTokens[0].size(), index = 0;
        FillLLMInputs(inputTokens, {{"promptLen", promptLen}, {"index", index}}, inputIds, attentionMask, positionIds);
        while (true) {
            auto st = std::chrono::system_clock::now();
            int ret = Forward(inputIds, attentionMask, positionIds, pastKeyValues, generationConfig, tokens);
            tokens.units[0].Push(ret);
            if (ret == eos_token_id) {
                break;
            }

            results.push_back(ret);
            std::string curString = weight.tokenizer.Decode(
                    Data(DataType::FLOAT32, {(int) results.size()}, results)).c_str();
            retString += curString;
            if (retCb)
#ifdef PY_API
                {
                    if (generationConfig.enable_hash_id) {
                        std::stringstream ss;
                        ss << retString << "hash_id:" << hash_id;
                        retCb(index, pybind11::bytes(ss.str()));
                    } else {
                        retCb(index, pybind11::bytes(retString));
                    }
                }
#else
                retCb(index, curString.c_str());
#endif
            index++;
            fflush(stdout);
            results.clear();

            inputTokens[0] = std::vector<float> {(float)ret};
            FillLLMInputs(inputTokens, {{"promptLen", promptLen}, {"index", index}}, inputIds, attentionMask, positionIds);
            if (index == generationConfig.output_token_limit) {
                break;
            }
            // printf("len = %d, spend %f s.\n", len, GetSpan(st, std::chrono::system_clock::now()));
        }
        if (retCb)
#ifdef PY_API
            {
                if (generationConfig.enable_hash_id) {
                    std::stringstream ss;
                    ss << retString << "hash_id:" << hash_id;
                    retCb(-1, pybind11::bytes(ss.str()));
                } else {
                    retCb(-1, pybind11::bytes(retString));
                }
            }
#else
            retCb(-1, retString.c_str());
#endif
        return retString;
    }

    void basellm::ResponseBatch(const std::vector<std::string> &inputs, std::vector<std::string> &outputs,
                                RuntimeResultBatch retCb, const fastllm::GenerationConfig &generationConfig) {
#ifdef USE_CUDA
        FastllmCudaClearBigBuffer();
#endif
        
#ifdef PY_API
        std::vector<std::string> prompts;
        std::vector < size_t > hash_ids;
        for (auto _input: inputs){
            size_t hash_id = std::hash<std::string>{}(_input);
            hash_ids.push_back(hash_id);

154
155
            size_t pos = _input.rfind("time_stamp:");
            std::string prompt = (generationConfig.enable_hash_id && pos != -1) ? _input.substr(0, pos) : _input;
zhouxiang's avatar
zhouxiang committed
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
            prompts.push_back(prompt);
        }
#else
        std::vector<std::string> prompts = inputs;
#endif
        // 1. first
        Data inputIds, attentionMask, positionIds;

        int batch = prompts.size();
        outputs.clear();
        outputs.resize(batch, "");

        std::vector<std::vector<float> > inputTokens;
        inputTokens.resize(batch);

        for (int i = 0; i < batch; i++) {
            Data now = this->weight.tokenizer.Encode(prompts[i]);
            for (int j = 0; j < now.Count(0); j++) {
                inputTokens[i].push_back(((float *) now.cpuData)[j]);
            }
        }

        std::vector <std::pair <Data, Data> > pastKeyValues;
        for (int i = 0; i < block_cnt; i++) {
            pastKeyValues.push_back(std::make_pair(Data(DataType::FLOAT32),
                                                   Data(DataType::FLOAT32)));
        }

        std::vector <std::map <std::string, int> > params;
        params.resize(batch);
        for (int i = 0; i < batch; i++) {
            params[i]["promptLen"] = (int)inputTokens[i].size();
        }
        params[0]["index"] = 0;
        int index = 0;

        LastTokensManager tokensManager (batch, generationConfig.last_n);
        std::vector <bool> isEnding = std::vector <bool> (batch, false);
        FillLLMInputsBatch(inputTokens, params, inputIds, attentionMask, positionIds);
        while (true) {
            auto st = std::chrono::system_clock::now();
            std::vector <int> ret = ForwardBatch(batch, inputIds, attentionMask, positionIds, pastKeyValues,
                                                 generationConfig, tokensManager);
            for (int i = 0; i < batch; i++) {
                tokensManager.units[i].Push(ret[i]);
            }
            std::vector <float> fret;
            std::vector <float> results;
            int endingCount = 0;
            std::vector <std::string> curStrings;
            for (int i = 0; i < batch; i++) {
                fret.push_back(ret[i]);
                inputTokens[i] = std::vector <float> {(float)ret[i]};
                if (ret[i] == eos_token_id) {
                    isEnding[i] = true;
211
212
213
214
215
                } else {
                    auto itStopTk = generationConfig.stop_token_ids.find(ret[i]);
                    if (itStopTk != generationConfig.stop_token_ids.end()) {
                        isEnding[i] = true;
                    }
zhouxiang's avatar
zhouxiang committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
                }
                if (isEnding[i]) {
                    curStrings.push_back("");
                    endingCount++;
                    continue;
                }
                results.push_back(ret[i]);
                std::string curString = weight.tokenizer.Decode(
                        Data(DataType::FLOAT32, {(int) results.size()}, results)).c_str();
                outputs[i] += curString;
                curStrings.push_back(curString);
                results.clear();
            }

            if (endingCount == batch) {
                break;
            }
            if (retCb)
#ifdef PY_API
                {
                    if (generationConfig.enable_hash_id) {
                        std::vector<pybind11::bytes> rtnStrings;
                        for (size_t i=0; i<batch; i++){
                            std::stringstream ss;
                            ss << curStrings[i] << "hash_id:" << hash_ids[i];
                            rtnStrings.push_back(pybind11::bytes(ss.str()));
                        }
                        retCb(index, rtnStrings);
                    } else {
                        std::vector<pybind11::bytes> rtnStrings;
                        for (size_t i=0; i<batch; i++){
                            std::stringstream ss;
                            ss << curStrings[i];
                            rtnStrings.push_back(pybind11::bytes(ss.str()));
                        }
                        retCb(index, rtnStrings);
                    }
                }
#else
                retCb(index, curStrings);
#endif
            index++;
            params[0]["index"] = index;
            FillLLMInputsBatch(inputTokens, params, inputIds, attentionMask, positionIds);
            // printf("len = %d, spend %f s.\n", len, GetSpan(st, std::chrono::system_clock::now()));

            if (index == generationConfig.output_token_limit) {
                break;
            }
        }
        if (retCb)
#ifdef PY_API
                {
                    if (generationConfig.enable_hash_id) {
                        std::vector<pybind11::bytes> rtnStrings;
                        for (size_t i=0; i<batch; i++){
                            std::stringstream ss;
                            ss << outputs[i] << "hash_id:" << hash_ids[i];
                            rtnStrings.push_back(pybind11::bytes(ss.str()));
                        }
                        retCb(-1, rtnStrings);
                    } else {
                        std::vector<pybind11::bytes> rtnStrings;
                        for (size_t i=0; i<batch; i++){
                            std::stringstream ss;
                            ss << outputs[i];
                            rtnStrings.push_back(pybind11::bytes(ss.str()));
                        }
                        retCb(-1, rtnStrings);
                    }
                }
#else
                retCb(-1, outputs);
#endif
    }

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
    void basellm::ResponseBatch(std::vector<std::vector<float>> &inputTokens, std::vector<std::string> &outputs,
                                RuntimeResultBatch retCb, const fastllm::GenerationConfig &generationConfig) {
#ifdef USE_CUDA
        FastllmCudaClearBigBuffer();
#endif
        // 1. first
        Data inputIds, attentionMask, positionIds;

        int batch = inputTokens.size();
        outputs.clear();
        outputs.resize(batch, "");

        std::vector <std::pair <Data, Data> > pastKeyValues;
        for (int i = 0; i < block_cnt; i++) {
            pastKeyValues.push_back(std::make_pair(Data(DataType::FLOAT32),
                                                   Data(DataType::FLOAT32)));
        }

        std::vector <std::map <std::string, int> > params;
        params.resize(batch);
        for (int i = 0; i < batch; i++) {
            params[i]["promptLen"] = (int)inputTokens[i].size();
        }
        params[0]["index"] = 0;
        int index = 0;

        LastTokensManager tokensManager (batch, generationConfig.last_n);
        std::vector <bool> isEnding = std::vector <bool> (batch, false);
        FillLLMInputsBatch(inputTokens, params, inputIds, attentionMask, positionIds);
        while (true) {
            auto st = std::chrono::system_clock::now();
            std::vector <int> ret = ForwardBatch(batch, inputIds, attentionMask, positionIds, pastKeyValues,
                                                 generationConfig, tokensManager);
            for (int i = 0; i < batch; i++) {
                tokensManager.units[i].Push(ret[i]);
            }
            std::vector <float> fret;
            std::vector <float> results;
            int endingCount = 0;
            std::vector <std::string> curStrings;
            for (int i = 0; i < batch; i++) {
                fret.push_back(ret[i]);
                inputTokens[i] = std::vector <float> {(float)ret[i]};
                if (ret[i] == eos_token_id) {
                    isEnding[i] = true;
                }
                if (isEnding[i]) {
                    curStrings.push_back("");
                    endingCount++;
                    continue;
                }
                results.push_back(ret[i]);
                std::string curString = weight.tokenizer.Decode(
                        Data(DataType::FLOAT32, {(int) results.size()}, results)).c_str();
                outputs[i] += curString;
                curStrings.push_back(curString);
                results.clear();
            }

            if (endingCount == batch) {
                break;
            }
            if (retCb)
#ifdef PY_API
                {
                    if (generationConfig.enable_hash_id) {
                        std::vector<pybind11::bytes> rtnStrings;
                        for (size_t i=0; i<batch; i++){
                            std::stringstream ss;
                            ss << curStrings[i] << "hash_id:" << hash_ids[i];
                            rtnStrings.push_back(pybind11::bytes(ss.str()));
                        }
                        retCb(index, rtnStrings);
                    } else {
                        std::vector<pybind11::bytes> rtnStrings;
                        for (size_t i=0; i<batch; i++){
                            std::stringstream ss;
                            ss << curStrings[i];
                            rtnStrings.push_back(pybind11::bytes(ss.str()));
                        }
                        retCb(index, rtnStrings);
                    }
                }
#else
                retCb(index, curStrings);
#endif
            index++;
            params[0]["index"] = index;
            FillLLMInputsBatch(inputTokens, params, inputIds, attentionMask, positionIds);
            // printf("len = %d, spend %f s.\n", len, GetSpan(st, std::chrono::system_clock::now()));

            if (index == generationConfig.output_token_limit) {
                break;
            }
        }
        if (retCb)
#ifdef PY_API
            {
                    if (generationConfig.enable_hash_id) {
                        std::vector<pybind11::bytes> rtnStrings;
                        for (size_t i=0; i<batch; i++){
                            std::stringstream ss;
                            ss << outputs[i] << "hash_id:" << hash_ids[i];
                            rtnStrings.push_back(pybind11::bytes(ss.str()));
                        }
                        retCb(-1, rtnStrings);
                    } else {
                        std::vector<pybind11::bytes> rtnStrings;
                        for (size_t i=0; i<batch; i++){
                            std::stringstream ss;
                            ss << outputs[i];
                            rtnStrings.push_back(pybind11::bytes(ss.str()));
                        }
                        retCb(-1, rtnStrings);
                    }
                }
#else
            retCb(-1, outputs);
#endif
    }

zhouxiang's avatar
zhouxiang committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    std::vector<int> basellm::ForwardBatch(int batch, const fastllm::Data &inputIds, const fastllm::Data &attentionMask,
                                           const fastllm::Data &positionIds,
                                           std::vector<std::pair<Data, Data>> &pastKeyValues,
                                           const fastllm::GenerationConfig &generationConfig,
                                           const fastllm::LastTokensManager &lastTokens,
                                           std::vector <std::vector <float>*> *retLogits) {
        printf("Unsupport forward batch.\n");
        exit(0);
    }

    std::vector<int> basellm::ForwardBatch(int batch, const fastllm::Data &inputIds,
                                           const std::vector<Data *> &attentionMask,
                          const std::vector<Data *> &positionIds, const std::vector<int> &seqLens,
                          std::vector<std::pair<Data *, Data *>> &pastKeyValues,
                          const std::vector<GenerationConfig> &generationConfigs,
                          const fastllm::LastTokensManager &lastTokens,
                          std::vector <std::vector <float>*> *logits) {
        std::vector <int> ret;
        int cur = 0;
        for (int i = 0; i < batch; i++) {
            std::vector<std::pair<Data, Data> > curKV;
            curKV.resize(this->block_cnt);
            for (int j = 0; j < this->block_cnt; j++) {
                Mul(*pastKeyValues[i * this->block_cnt + j].first, 1.0, curKV[j].first);
                Mul(*pastKeyValues[i * this->block_cnt + j].second, 1.0, curKV[j].second);
            }
            Data curInput;
            Split(inputIds, 1, cur, cur + seqLens[i], curInput);
            LastTokensManager curTokens;
            curTokens.units.push_back(lastTokens.units[i]);
            ret.push_back(this->Forward(curInput, *attentionMask[i], *positionIds[i], curKV, generationConfigs[i], curTokens));
            for (int j = 0; j < this->block_cnt; j++) {
                Mul(curKV[j].first, 1.0, *pastKeyValues[i * this->block_cnt + j].first);
                Mul(curKV[j].second, 1.0, *pastKeyValues[i * this->block_cnt + j].second);
            }
        }
        return ret;
    }

    int basellm::LaunchResponseTokens(const std::vector<int> &inputTokens,
                                      const fastllm::GenerationConfig &generationConfig) {
        mainLoopLocker.lock();
        if (mainLoop == nullptr) {
            if (mainLoop == nullptr) {
                mainLoop = new std::thread([](basellm *model) {
                    while (true) {
                        std::vector <Data*> attentionMasks;
                        std::vector <Data*> positionIds;
                        std::vector <std::pair <Data*, Data*> > pastKeyValues;
                        std::vector <float> ids;
                        std::vector <int> seqLens;
                        std::vector <int> handles;
                        std::vector <GenerationConfig> generationConfigs;
                        LastTokensManager tokensManager;
                        std::vector <std::vector <float>* > logits;
                        model->dictLocker.lock();
469
470
471
472
473
474
475
476
477

                        int limit = model->tokensLimit > 0 ? model->tokensLimit : 1e9;
                        int lenSum = 0;
                        for (auto &it: model->responseContextDict.dicts) {
                            if (it.second->pastKeyValues[0].first.expansionDims.size() > 0 && !it.second->isEnding) {
                                lenSum += it.second->pastKeyValues[0].first.expansionDims[1];
                            }
                        }

zhouxiang's avatar
zhouxiang committed
478
                        for (int isPrompt = 1; isPrompt >= 0; isPrompt--) {
479
                            int cnt = 0;
zhouxiang's avatar
zhouxiang committed
480
481
482
                            if (isPrompt == 0 && seqLens.size() > 0) {
                                continue;
                            }
483
484
485
486
                            if (lenSum > limit && isPrompt) {
                                continue;
                            }

zhouxiang's avatar
zhouxiang committed
487
488
489
490
491
492
493
                            for (auto &it: model->responseContextDict.dicts) {
                                if (it.second->isEnding) {
                                    continue;
                                }
                                if (isPrompt && it.second->preTokens != 0) {
                                    continue;
                                }
494
495
496
497
498
499
500
501
502
503
                                if (!isPrompt && it.second->preTokens == 0) {
                                    continue;
                                }

                                int outputLimit = it.second->generationConfig.output_token_limit;
                                outputLimit = (outputLimit < 0 ? 128 : outputLimit);
                                if (isPrompt && lenSum + it.second->currentTokens.size() + outputLimit > limit) {
                                    continue;
                                }

zhouxiang's avatar
zhouxiang committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
                                generationConfigs.push_back(it.second->generationConfig);
                                if (it.second->generationConfig.output_logits) {
                                    it.second->resultLogits.push(new std::vector<float>());
                                    logits.push_back(it.second->resultLogits.back());
                                } else {
                                    logits.push_back(nullptr);
                                }

                                tokensManager.units.push_back(it.second->tokens);
                                handles.push_back(it.first);

                                if (it.second->preTokens == 0) {
                                    it.second->intParams["promptLen"] = it.second->currentTokens.size();
                                    it.second->intParams["index"] = 0;
                                } else {
                                    it.second->intParams["index"]++;
                                }
                                Data inputIds, attentionMask, curPositionIds;
                                std::vector<std::vector<float> > tokens;
                                tokens.resize(1);
                                for (int i: it.second->currentTokens) {
                                    tokens[0].push_back(i);
                                }
                                model->FillLLMInputs(tokens, it.second->intParams, inputIds, attentionMask,
                                                     curPositionIds);
                                seqLens.push_back(inputIds.Count(0));
                                for (int i = 0; i < inputIds.Count(0); i++) {
                                    ids.push_back(((float *) inputIds.cpuData)[i]);
                                }
                                if (attentionMask.dims.size() == 0) {
                                    attentionMasks.push_back(nullptr);
                                } else {
                                    attentionMasks.push_back(new Data());
                                    attentionMasks.back()->CopyFrom(attentionMask);
                                }
                                if (curPositionIds.dims.size() == 0) {
                                    positionIds.push_back(nullptr);
                                } else {
                                    positionIds.push_back(new Data());
                                    positionIds.back()->CopyFrom(curPositionIds);
                                }
                                it.second->preTokens += seqLens.back();
                                for (int i = 0; i < model->block_cnt; i++) {
                                    pastKeyValues.push_back(std::make_pair(&it.second->pastKeyValues[i].first,
                                                                           &it.second->pastKeyValues[i].second));
                                }
                                if (isPrompt) {
551
                                    cnt += it.second->currentTokens.size();
zhouxiang's avatar
zhouxiang committed
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
                                    break;
                                }
                            }
                        }
                        if (seqLens.size() > 0) {
                            std::vector <std::pair <Data, Data> > *pastKeyValue1;
                            if (seqLens.size() == 1) {
                                pastKeyValue1 = &model->responseContextDict.dicts[handles[0]]->pastKeyValues;
                            }
                            model->dictLocker.unlock();
#ifdef USE_CUDA
                            FastllmCudaClearBigBuffer();
#endif
                            Data inputIds = Data(DataType::FLOAT32, {1, (int) ids.size()}, ids);
                            std::vector<int> ret;
567
568
auto st = std::chrono::system_clock::now();
//ClearProfiler();
zhouxiang's avatar
zhouxiang committed
569
570
571
572
573
574
575
576
577
578
                            if (seqLens.size() > 1) {
                                ret = model->ForwardBatch(seqLens.size(), inputIds, attentionMasks,
                                                          positionIds, seqLens, pastKeyValues, generationConfigs,
                                                          tokensManager, &logits);
                            } else {
                                ret = std::vector <int> {model->Forward(inputIds,
                                                                        attentionMasks[0] == nullptr ? Data() : *attentionMasks[0],
                                                                        *positionIds[0],
                                                                        *pastKeyValue1, generationConfigs[0], tokensManager, logits[0])};
                            }
579
580
581
582
583
584
585
//PrintProfiler();
/*
static int tot = 0;
printf("len = %d, spend = %f s.\n", (int)seqLens.size(), GetSpan(st, std::chrono::system_clock::now()));
tot += (int)seqLens.size();
printf("tot = %d\n", tot);
*/
zhouxiang's avatar
zhouxiang committed
586
587
588
589
590
591
592
                            model->dictLocker.lock();
                            for (int i = 0; i < handles.size(); i++) {
                                auto &it = *model->responseContextDict.dicts.find(handles[i]);
                                int curRet = ret[i];
                                if (curRet == model->eos_token_id) {
                                    it.second->isEnding = true;
                                } else {
593
594
595
596
597
598
                                    auto itStopTk = it.second->generationConfig.stop_token_ids.find(curRet);
                                    if (itStopTk != it.second->generationConfig.stop_token_ids.end()) {
                                            it.second->isEnding = true;
                                    }
                                }
                                if (it.second->isEnding == false) {
zhouxiang's avatar
zhouxiang committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
                                    it.second->currentTokens = std::vector<int>{curRet};
                                    it.second->resultTokenQueue.push(curRet);
                                    it.second->tokens.Push(curRet);
                                    it.second->curTokens++;
                                    if (it.second->curTokens == it.second->generationConfig.output_token_limit) {
                                        it.second->isEnding = true;
                                    }
                                }
                            }
                        }

                        for (int i = 0; i < attentionMasks.size(); i++) {
                            delete attentionMasks[i];
                        }
                        for (int i = 0; i < positionIds.size(); i++) {
                            delete positionIds[i];
                        }

                        model->dictLocker.unlock();
                        MySleep(0);
619
620
621
622
623
624
625
						// 介意cpu一直占用可以将上面这行换成下面的代码
                        /*if (seqLens.size() > 0) {
                            MySleep(0);
                        }
                        else{
                            std::this_thread::sleep_for(std::chrono::milliseconds(10));
                        }*/
zhouxiang's avatar
zhouxiang committed
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
                    }
                }, this);
            }
        }
        mainLoopLocker.unlock();

        dictLocker.lock();
        int handleId = responseContextDict.CreateHandle();
        ResponseContext *context = responseContextDict.GetHandle(handleId);
        context->Init(this->block_cnt);
        context->currentTokens = inputTokens;
        context->generationConfig = generationConfig;
        context->tokens = LastTokensUnit(generationConfig.last_n);
        dictLocker.unlock();
        return handleId;
    }

    int basellm::FetchResponseTokens(int handleId) {
        dictLocker.lock();
        ResponseContext *context = responseContextDict.GetHandle(handleId);
        if (context == nullptr) {
            dictLocker.unlock();
            return -1;
        } else {
            while (true) {
                if (context->resultTokenQueue.size() > 0) {
                    int ret = context->resultTokenQueue.front();
                    context->resultTokenQueue.pop();
                    dictLocker.unlock();
                    return ret;
                } else {
                    if (context->isEnding) {
                        responseContextDict.RemoveHandle(handleId);
                        dictLocker.unlock();
                        return -1;
                    }
                }
                dictLocker.unlock();
                MySleep(0);
665
666
				// 介意cpu一直占用可以将上面这行换成下面的代码
                // std::this_thread::sleep_for(std::chrono::milliseconds(10));
zhouxiang's avatar
zhouxiang committed
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
                dictLocker.lock();
            }
        }
    }

    int basellm::FetchResponseLogits(int handleId, std::vector<float> &logits) {
        dictLocker.lock();
        ResponseContext *context = responseContextDict.GetHandle(handleId);
        if (context == nullptr) {
            dictLocker.unlock();
            return -1;
        } else {
            while (true) {
                if (context->resultTokenQueue.size() > 0) {
                    int ret = context->resultTokenQueue.front();
                    context->resultTokenQueue.pop();
                    if (!context->resultLogits.empty()) {
                        logits = *context->resultLogits.front();
                        delete context->resultLogits.front();
                        context->resultLogits.pop();
                    }
                    dictLocker.unlock();
                    return ret;
                } else {
                    if (context->isEnding) {
                        responseContextDict.RemoveHandle(handleId);
                        dictLocker.unlock();
                        return -1;
                    }
                }
                dictLocker.unlock();
                MySleep(0);
699
700
				// 介意cpu一直占用可以将上面这行换成下面的代码
                // std::this_thread::sleep_for(std::chrono::milliseconds(10));
zhouxiang's avatar
zhouxiang committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
                dictLocker.lock();
            }
        }
    }

    // 根据输入的tokens生成LLM推理的输入
    void basellm::FillLLMInputs(std::vector <std::vector <float> > &inputTokens,
                               const std::map <std::string, int> &params,
                               Data &inputIds, Data &attentionMask, Data &positionIds) {
    }

    // 根据输入的tokens生成LLM推理的输入
    void basellm::FillLLMInputsBatch(std::vector<std::vector<float>> &inputTokens,
                                     const std::vector<std::map<std::string, int>> &params, fastllm::Data &inputIds,
                                     fastllm::Data &attentionMask, fastllm::Data &positionIds) {
    }

    void basellm::SetAdapter(const std::string &name) {
        if (weight.peftDict.find(name) == weight.peftDict.end()) {
            ErrorInFastLLM("Can`t find adapter name: " + name);
        }
        adapterName = name;
    }

    void basellm::DisableAdapter() {
        adapterName = "";
    }
}