model.cpp 4.64 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
8
9
#include "utils.h"

#include "model.h"
#include "fastllm.h"

#include "chatglm.h"
#include "moss.h"
#include "llama.h"
#include "qwen.h"
10
#include "glm.h"
zhouxiang's avatar
zhouxiang committed
11
12
13
14
15
16
17
18
19

namespace fastllm {
    void basellm::LoadFromFile(const std::string &fileName) {
        this->weight.LoadFromFile(fileName);
        this->InitParams();
    }

    void basellm::InitParams() {
        if (this->weight.dicts.find("bos_token_id") != this->weight.dicts.end()) {
20
21
22
23
24
25
            if(this->weight.dicts["bos_token_id"]!="None"){
                this->bos_token_id = atoi(this->weight.dicts["bos_token_id"].c_str());
            }
            if(this->weight.dicts["eos_token_id"]!="None"){
                this->eos_token_id = atoi(this->weight.dicts["eos_token_id"].c_str());
            }
zhouxiang's avatar
zhouxiang committed
26
27
28
29
30
31
32
        }
        if (this->weight.dicts.find("im_start_id") != this->weight.dicts.end()) {
            this->bos_token_id = atoi(this->weight.dicts["im_start_id"].c_str());
            this->eos_token_id = atoi(this->weight.dicts["im_end_id"].c_str());
        }
        if (this->weight.dicts.find("num_hidden_layers") != this->weight.dicts.end()) {
            block_cnt = atoi(this->weight.dicts["num_hidden_layers"].c_str());
33
34
        }else if (this->weight.dicts.find("num_layers") != this->weight.dicts.end()) {
            block_cnt = atoi(this->weight.dicts["num_layers"].c_str());
zhouxiang's avatar
zhouxiang committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        }
        if (this->weight.dicts.find("hidden_size") != this->weight.dicts.end()) {
            embed_dim = atoi(this->weight.dicts["hidden_size"].c_str());
        }
        if (this->weight.dicts.find("num_attention_heads") != this->weight.dicts.end()) {
            num_attention_heads = atoi(this->weight.dicts["num_attention_heads"].c_str());
        }
        if (this->weight.dicts.find("pre_prompt") != this->weight.dicts.end()) {
            pre_prompt = this->weight.dicts["pre_prompt"];
        }
        if (this->weight.dicts.find("user_role") != this->weight.dicts.end()) {
            user_role = this->weight.dicts["user_role"];
        }
        if (this->weight.dicts.find("bot_role") != this->weight.dicts.end()) {
            bot_role = this->weight.dicts["bot_role"];
        }
        if (this->weight.dicts.find("history_sep") != this->weight.dicts.end()) {
            history_sep = this->weight.dicts["history_sep"];
        }

        this->deviceMap = GetDeviceMap();
    }

    void basellm::SaveLowBitModel(const std::string &fileName, int bit) {
        this->weight.SaveLowBitModel(fileName, bit);
    }

    void basellm::SaveModel(const std::string &fileName) {
        this->weight.SaveLowBitModel(fileName, 0);
    }

    fastllm::basellm *CreateModelWithType(const std::string &modelType) {
        basellm *model = nullptr;
        if (modelType == "chatglm") {
            model = (basellm*)(new ChatGLMModel());
        } else if (modelType == "moss") {
            model = (basellm*)(new MOSSModel());
            model->weight.tokenizer.type = Tokenizer::TokenizerType::NORMAL;
            model->eos_token_id = 106068;
        } else if (modelType == "baichuan") {
            model = (basellm*)(new LlamaModel());
            model->model_type = "baichuan";
            model->pre_prompt = "";
            model->user_role = "<human>:";
            model->bot_role = "\n<bot>:";
            model->history_sep = "\n";
            model->weight.tokenizer.type = Tokenizer::TokenizerType::BPE;
        } else if (modelType == "llama") {
            model = (basellm*)(new LlamaModel());
        } else if (modelType == "nsql-llama-2-7b") {
            model = (basellm*)(new LlamaModel());
            LlamaModel* model_tmp = dynamic_cast<LlamaModel*>(model);
            model_tmp->is_nsql = true;
        } else if (modelType == "qwen") {
            model = (basellm *) (new QWenModel());
            model->weight.tokenizer.type = Tokenizer::TokenizerType::QWEN;
91
92
93
94
95
        } else if (modelType == "glm") {
            model = (basellm*)(new GLMModel());
        } else if (modelType == "chatglm3") {
            model = (basellm*)(new ChatGLMModel());
            model->model_type = "chatglm3";
zhouxiang's avatar
zhouxiang committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        } else {
            ErrorInFastLLM("Unkown model type: " + modelType);
        }
        return model;
    }

    std::unique_ptr<fastllm::basellm> CreateLLMModelFromFile(const std::string &fileName) {
        std::string modelType = GetModelTypeFromFile(fileName);
        basellm *model = CreateModelWithType(modelType);
        model->LoadFromFile(fileName);
        model->WarmUp();
        return std::unique_ptr<fastllm::basellm> (model);
    }

    std::unique_ptr<basellm> CreateEmptyLLMModel(const std::string &modelType) {
        basellm *model = CreateModelWithType(modelType);
        return std::unique_ptr<fastllm::basellm> (model);
    }
}