cudadevicebatch.cpp 18.2 KB
Newer Older
zhouxiang's avatar
zhouxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
//
// Created by huangyuyang on 7/19/23.
//

#include "devices/cpu/cpudevice.h"
#include "devices/cuda/cudadevice.h"

#include "fastllm-cuda.cuh"
#include "utils.h"

namespace fastllm {
    void CudaSplitBatchOp::Reshape(const std::string &opType, const fastllm::DataDict &datas,
                                  const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        Data &input = *(datas.find("input")->second);
        Data **outputs = (Data**)(datas.find("output")->second);
        int axis = intParams.find("axis") != intParams.end() ? intParams.find("axis")->second : -1;
        int dimsLen = input.dims.size();
        axis = (axis % dimsLen + dimsLen) % dimsLen;
        int part = input.dims[axis];
        std::vector <int> dims = input.dims;
        dims[axis] = 1;
        for (int i = 0; i < part; i++) {
            outputs[i]->dataType = input.dataType;
            outputs[i]->Resize(dims);
        }
    }

    void CudaSplitBatchOp::Run(const std::string &opType, const fastllm::DataDict &datas,
                              const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        Data &input = *(datas.find("input")->second);
        Data **outputs = (Data**)(datas.find("output")->second);
        int axis = intParams.find("axis") != intParams.end() ? intParams.find("axis")->second : -1;
        int dimsLen = input.dims.size();
        axis = (axis % dimsLen + dimsLen) % dimsLen;
        int part = input.dims[axis];
        for (int i = 0; i < part; i++) {
            outputs[i]->Allocate();
        }
        FastllmCudaSplitBatch(input, outputs, axis);
    }

    void CudaCatBatchOp::Reshape(const std::string &opType, const fastllm::DataDict &datas,
                                const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        Data **inputs = (Data**)(datas.find("input")->second);
        Data &output = *(datas.find("output")->second);
        int axis = intParams.find("axis") != intParams.end() ? intParams.find("axis")->second : -1;
        int dimsLen = inputs[0]->dims.size();
        axis = (axis % dimsLen + dimsLen) % dimsLen;
        int part = intParams.find("input___batch")->second;
        std::vector <int> dims = inputs[0]->dims;
        dims[axis] = part;
        output.dataType = inputs[0]->dataType;
        output.Resize(dims);
    }

    void CudaCatBatchOp::Run(const std::string &opType, const fastllm::DataDict &datas,
                             const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        Data **inputs = (Data**)(datas.find("input")->second);
        Data &output = *(datas.find("output")->second);
        int axis = intParams.find("axis") != intParams.end() ? intParams.find("axis")->second : -1;
        int dimsLen = inputs[0]->dims.size();
        axis = (axis % dimsLen + dimsLen) % dimsLen;
        int part = intParams.find("input___batch")->second;
        output.Allocate();
        FastllmCudaCatBatch(inputs, output, axis);
    }

    void CudaMulBatchOp::Run(const std::string &opType, const fastllm::DataDict &datas,
                             const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        Data **inputs = (Data**)(datas.find("input")->second);
        Data **outputs = (Data**)(datas.find("output")->second);

        float v = floatParams.find("v") != floatParams.end() ? floatParams.find("v")->second : 1.0;
        int batch = intParams.find("input___batch")->second;
        if (outputs[0]->Count(0) > outputs[0]->expansionSize) {
            for (int i = 0; i < batch; i++) {
                outputs[i]->Allocate();
                AssertInFastLLM(inputs[i]->dataType == DataType::FLOAT32,
                                "Mul error: Data's type should be float32.\n");
            }
        }

        FastllmCudaMulBatch(inputs, v, batch, outputs);
    }

    void CudaMatMulBatchOp::Reshape(const std::string &opType, const fastllm::DataDict &datas,
                                         const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        int batch = intParams.find("input0___batch")->second;
        Data** input0s = ((Data**)datas.find("input0")->second);
        Data** input1s = ((Data**)datas.find("input1")->second);
        Data** outputs = ((Data**)datas.find("output")->second);

        if (input0s[0]->dims.size() == 3 && input1s[0]->dims.size() == 3) {
            AssertInFastLLM(input0s[0]->dataType == DataType::FLOAT32 && input1s[0]->dataType == DataType::FLOAT32,
                            "MatMul's input's type should be float32.\n");
            AssertInFastLLM(input0s[0]->dims[0] == input1s[0]->dims[0] &&
                            input0s[0]->dims[2] == input1s[0]->dims[1],
                            "MatMul's shape error.\n");
            for (int i = 0; i < batch; i++) {
                outputs[i]->dataType = input0s[i]->dataType;
                outputs[i]->Resize({input0s[i]->dims[0], input0s[i]->dims[1], input1s[i]->dims[2]});
            }
        } else {
            fastllm::BaseOperator *op = (fastllm::BaseOperator*)(new CudaMatMulOp());
            DataDict tempDatas = datas;
            for (int i = 0; i < batch; i++) {
                tempDatas["input0"] = ((Data **) datas.find("input0")->second)[i];
                tempDatas["input1"] = ((Data **) datas.find("input1")->second)[i];
                tempDatas["output"] = ((Data **) datas.find("output")->second)[i];
                op->Reshape("MatMulTransB", tempDatas, floatParams, intParams);
            }
            delete op;
        }
    }

    void CudaMatMulBatchOp::Run(const std::string &opType, const fastllm::DataDict &datas,
                                     const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        int batch = intParams.find("input0___batch")->second;
        Data **input0s = (Data**)(datas.find("input0")->second);
        Data **input1s = (Data**)(datas.find("input1")->second);
        Data **outputs = (Data**)(datas.find("output")->second);
        float alpha = floatParams.find("alpha") != floatParams.end() ? floatParams.find("alpha")->second : -1;

        std::vector <void*> i0s, i1s, os;
        std::vector <int> ns, ms, ks, i0Strides, i1Strides;
        for (int i = 0; i < batch; i++) {
            auto &input0 = *input0s[i];
            auto &input1 = *input1s[i];
            auto &output = *outputs[i];
            output.Allocate();

            int input0Spatial = input0.Count(input0.dims.size() - 2);
            int input1Spatial = input1.Count(input1.dims.size() - 2);
            int input0Stride = input0.strides[input0.dims.size() - 2];
            int input1Stride = input1.strides[input1.dims.size() - 2];
            int n = input0.dims[input0.dims.size() - 2];
            int m = input0.dims.back();
            int k = input1.dims[input1.dims.size() - 1];
            int batch0 = input0.Count(0) / input0Spatial;
            int batch1 = input1.Count(0) / input1Spatial;
            int outputSpatial = output.Count(output.dims.size() - 2);

            for (int b = 0; b < batch0; b++) {
                i0s.push_back((float*)input0.cudaData + b * input0Spatial);
                i1s.push_back((float*)input1.cudaData + b * input1Spatial);
                os.push_back((float*)output.cudaData + b * outputSpatial);
                ns.push_back(n);
                ms.push_back(m);
                ks.push_back(k);
                i0Strides.push_back(input0Stride);
                i1Strides.push_back(input1Stride);
            }
        }

        FastllmCudaBatchMatMulBatch(i0s.data(), i1s.data(), os.data(),
                                    ns.data(), ms.data(), ks.data(),
                                    i0Strides.data(), i1Strides.data(), alpha, (int)i0s.size());
    }

    void CudaMatMulTransBBatchOp::Reshape(const std::string &opType, const fastllm::DataDict &datas,
                                          const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        int batch = intParams.find("input0___batch")->second;
        Data **input0s = ((Data **) datas.find("input0")->second);
        Data **input1s = ((Data **) datas.find("input1")->second);
        Data **outputs = ((Data **) datas.find("output")->second);

        if (input0s[0]->dims.size() == 3 && input1s[0]->dims.size() == 3) {
            AssertInFastLLM(input0s[0]->dataType == DataType::FLOAT32 && input1s[0]->dataType == DataType::FLOAT32,
                            "MatMul's input's type should be float32.\n");
            AssertInFastLLM(input0s[0]->dims[0] == input1s[0]->dims[0] &&
                            input0s[0]->dims[2] == input1s[0]->dims[2],
                            "MatMul's shape error.\n");
            for (int i = 0; i < batch; i++) {
                outputs[i]->dataType = input0s[i]->dataType;
                outputs[i]->Resize({input0s[i]->dims[0], input0s[i]->dims[1], input1s[i]->dims[1]});
            }
        } else {
            fastllm::BaseOperator *op = (fastllm::BaseOperator *) (new CudaMatMulTransBOp());
            DataDict tempDatas = datas;
            for (int i = 0; i < batch; i++) {
                tempDatas["input0"] = ((Data **) datas.find("input0")->second)[i];
                tempDatas["input1"] = ((Data **) datas.find("input1")->second)[i];
                tempDatas["output"] = ((Data **) datas.find("output")->second)[i];
                op->Reshape("MatMulTransB", tempDatas, floatParams, intParams);
            }
            delete op;
        }
    }

    void CudaMatMulTransBBatchOp::Run(const std::string &opType, const fastllm::DataDict &datas,
                                      const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        int batch = intParams.find("input0___batch")->second;
        Data **input0s = (Data**)(datas.find("input0")->second);
        Data **input1s = (Data**)(datas.find("input1")->second);
        Data **outputs = (Data**)(datas.find("output")->second);
        float alpha = floatParams.find("alpha") != floatParams.end() ? floatParams.find("alpha")->second : -1;

        std::vector <void*> i0s, i1s, os;
        std::vector <int> ns, ms, ks, i0Strides, i1Strides;
        for (int i = 0; i < batch; i++) {
            auto &input0 = *input0s[i];
            auto &input1 = *input1s[i];
            auto &output = *outputs[i];
            output.Allocate();
            int input0Spatial = input0.Count(input0.dims.size() - 2);
            int input1Spatial = input1.Count(input1.dims.size() - 2);
            int input0Stride = input0.strides[input0.dims.size() - 2];
            int input1Stride = input1.strides[input1.dims.size() - 2];
            int n = input0.dims[input0.dims.size() - 2];
            int m = input0.dims.back();
            int k = input1.dims[input1.dims.size() - 2];
            int batch0 = input0.Count(0) / input0Spatial;
            int batch1 = input1.Count(0) / input1Spatial;

            int outputSpatial = output.Count(output.dims.size() - 2);
            for (int b = 0; b < batch0; b++) {
                i0s.push_back((float*)input0.cudaData + b * input0Spatial);
                i1s.push_back((float*)input1.cudaData + b * input1Spatial);
                os.push_back((float*)output.cudaData + b * outputSpatial);
                ns.push_back(n);
                ms.push_back(m);
                ks.push_back(k);
                i0Strides.push_back(input0Stride);
                i1Strides.push_back(input1Stride);
            }
        }

        FastllmCudaBatchMatMulTransBBatch(i0s.data(), i1s.data(), os.data(),
                                         ns.data(), ms.data(), ks.data(),
                                         i0Strides.data(), i1Strides.data(), alpha, (int)i0s.size());
    }

    void CudaSoftmaxBatchOp::Run(const std::string &opType, const fastllm::DataDict &datas,
                                 const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        int axis = intParams.find("axis") != intParams.end() ? intParams.find("axis")->second : -1;
        int batch = intParams.find("input___batch")->second;
        Data **inputs = (Data**)(datas.find("input")->second);
        Data **outputs = (Data**)(datas.find("output")->second);
        for (int i = 0; i < batch; i++) {
            outputs[i]->Allocate();
        }
        FastllmCudaSoftmaxBatch(inputs, outputs, axis, batch);
    }

    void CudaCatDirectBatchOp::Run(const std::string &opType, const fastllm::DataDict &datas,
                                   const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        Data **input0s = (Data**)(datas.find("input0")->second);
        Data **input1s = (Data**)(datas.find("input1")->second);
        int batch = intParams.find("input0___batch")->second;
        int axis = intParams.find("axis") != intParams.end() ? intParams.find("axis")->second : -1;
        std::vector <void*> dsts, srcs;
        std::vector <size_t> dpitchs, spitchs, widths, heights;
        for (int b = 0; b < batch; b++) {
            Data &input0 = *input0s[b];
            Data &input1 = *input1s[b];
            AssertInFastLLM(input0.dataType == DataType::FLOAT32 && input1.dataType == DataType::FLOAT32,
                            "Cat's input's type should be float32.\n");
            AssertInFastLLM(input0.dataDevice == input1.dataDevice,
                            "CatDirect error: inputs should use same device.\n");

            if (input0.dims.size() == 0) {
                input0.Resize(input1.dims);
                AssertInFastLLM(input0.expansionDims.size() == input1.dims.size() &&
                                input1.dims[axis] <= input0.expansionDims[axis],
                                "CatDirect Error: input0's expansion size is not enough.\n");
                int outer = input1.Count(0) / input1.Count(axis);
                int input0Stride = input0.Count(axis);
                int input1Stride = input1.Count(axis);
                int inner = input0.strides[axis];
                int unitSize = input0.unitSize;

                dsts.push_back(input0.cudaData);
                dpitchs.push_back(input0Stride * unitSize);
                srcs.push_back(input1.cudaData);
                spitchs.push_back(input1Stride * unitSize);
                widths.push_back(input1.dims[axis] * inner * unitSize);
                heights.push_back(outer);
                continue;
            }

            AssertInFastLLM(input0.dims.size() == input1.dims.size(),
                            "Cat Error: input's shape's size should be same.\n");
            int dimsLen = input0.dims.size();
            axis = (axis % dimsLen + dimsLen) % dimsLen;

            for (int i = 0; i < dimsLen; i++) {
                if (i != axis) {
                    AssertInFastLLM(input0.dims[i] == input1.dims[i], "Cat Error: input's shape doesn't match.");
                }
            }

            std::vector<int> dims = input0.dims;
            std::vector<int> oldDims = dims;
            dims[axis] += input1.dims[axis];
            input0.Resize(dims);
            int outer = input0.Count(0) / input0.Count(axis);
            int input0Stride = input0.Count(axis);
            int input1Stride = input1.Count(axis);

            int inner = input0.strides[axis];
            int unitSize = input0.unitSize;

            dsts.push_back((uint8_t *) input0.cudaData + oldDims[axis] * inner * unitSize);
            dpitchs.push_back(input0Stride * unitSize);
            srcs.push_back(input1.cudaData);
            spitchs.push_back(input1Stride * unitSize);
            widths.push_back(input1.dims[axis] * inner * unitSize);
            heights.push_back(outer);
        }

        FastllmCudaMemcpy2DDeviceToDeviceBatch(dsts.data(), dpitchs.data(), srcs.data(),
                                               spitchs.data(), widths.data(), heights.data(), dsts.size());
    }
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355

    void CudaAttentionBatchOp::Reshape(const std::string &opType, const fastllm::DataDict &datas,
                                      const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        Data **qs = (Data**)(datas.find("q")->second);
        Data **ks = (Data**)(datas.find("k")->second);
        Data **vs = (Data**)(datas.find("v")->second);
        Data **outputs = (Data**)(datas.find("output")->second);
        int group = intParams.find("group") != intParams.end() ? intParams.find("group")->second : 1;
        int batch = intParams.find("q___batch")->second;

        Data &q = *qs[0], &k = *ks[0], &v = *vs[0];
        AssertInFastLLM(q.dims.size() == 3 && k.dims.size() == 3 && v.dims.size() == 3, "Attention: dims of q, k, v should be 3.\n");
        AssertInFastLLM(q.dims[2] == k.dims[2], "Attention: q.dims[2] should be equal to k.dims[2].\n");
        AssertInFastLLM(k.dims[1] == v.dims[1], "Attention: k.dims[1] should be equal to v.dims[1].\n");
        AssertInFastLLM(k.dims[0] == v.dims[0], "Attention: k.dims[0] should be equal to v.dims[0].\n");
        AssertInFastLLM(q.dims[0] == k.dims[0] * group, "Attention: q.dims[0] should be equal to k.dims[0] * group.\n");
        AssertInFastLLM(q.dataType == k.dataType && q.dataType == v.dataType,
                        "Attention: q, k, v's datatype should be same.\n");
        AssertInFastLLM(q.dataType == DataType::FLOAT32, "Attention's input's type should be float32.\n");

        for (int i = 0; i < batch; i++) {
            outputs[i]->dataType = qs[i]->dataType;
            outputs[i]->Resize({qs[i]->dims[0], qs[i]->dims[1], vs[i]->dims[2]});
        }
    }

    void CudaAttentionBatchOp::Run(const std::string &opType, const fastllm::DataDict &datas,
                                  const fastllm::FloatDict &floatParams, const fastllm::IntDict &intParams) {
        int batch = intParams.find("q___batch")->second;
        Data **qs = (Data**)(datas.find("q")->second);
        Data **ks = (Data**)(datas.find("k")->second);
        Data **vs = (Data**)(datas.find("v")->second);
        Data **masks = (Data**)(datas.find("mask")->second);
        Data **outputs = (Data**)(datas.find("output")->second);
        for (int i = 0; i < batch; i++) {
            outputs[i]->Allocate();
        }
        FastllmCudaAttentionBatch(qs, ks, vs, masks, outputs,
                                  intParams.find("group")->second,
                                  floatParams.find("scale")->second,
                                  intParams.find("q___batch")->second);
    }
zhouxiang's avatar
zhouxiang committed
356
}