Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
FastFold
Commits
e9db72d6
Unverified
Commit
e9db72d6
authored
Jan 16, 2023
by
LuGY
Committed by
GitHub
Jan 16, 2023
Browse files
add metrics for training (#138)
* add metrics for training * modify log loss format
parent
29f11deb
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
283 additions
and
17 deletions
+283
-17
fastfold/utils/superimposition.py
fastfold/utils/superimposition.py
+100
-0
fastfold/utils/validation_utils.py
fastfold/utils/validation_utils.py
+127
-0
train.py
train.py
+56
-17
No files found.
fastfold/utils/superimposition.py
0 → 100644
View file @
e9db72d6
# Copyright 2023 HPC-AI Tech Inc.
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
Bio.SVDSuperimposer
import
SVDSuperimposer
import
torch
def
_superimpose_np
(
reference
,
coords
):
"""
Superimposes coordinates onto a reference by minimizing RMSD using SVD.
Args:
reference:
[N, 3] reference array
coords:
[N, 3] array
Returns:
A tuple of [N, 3] superimposed coords and the final RMSD.
"""
sup
=
SVDSuperimposer
()
sup
.
set
(
reference
,
coords
)
sup
.
run
()
return
sup
.
get_transformed
(),
sup
.
get_rms
()
def
_superimpose_single
(
reference
,
coords
):
reference_np
=
reference
.
detach
().
cpu
().
numpy
()
coords_np
=
coords
.
detach
().
cpu
().
numpy
()
superimposed
,
rmsd
=
_superimpose_np
(
reference_np
,
coords_np
)
return
coords
.
new_tensor
(
superimposed
),
coords
.
new_tensor
(
rmsd
)
def
superimpose
(
reference
,
coords
,
mask
):
"""
Superimposes coordinates onto a reference by minimizing RMSD using SVD.
Args:
reference:
[*, N, 3] reference tensor
coords:
[*, N, 3] tensor
mask:
[*, N] tensor
Returns:
A tuple of [*, N, 3] superimposed coords and [*] final RMSDs.
"""
def
select_unmasked_coords
(
coords
,
mask
):
return
torch
.
masked_select
(
coords
,
(
mask
>
0.
)[...,
None
],
).
reshape
(
-
1
,
3
)
batch_dims
=
reference
.
shape
[:
-
2
]
flat_reference
=
reference
.
reshape
((
-
1
,)
+
reference
.
shape
[
-
2
:])
flat_coords
=
coords
.
reshape
((
-
1
,)
+
reference
.
shape
[
-
2
:])
flat_mask
=
mask
.
reshape
((
-
1
,)
+
mask
.
shape
[
-
1
:])
superimposed_list
=
[]
rmsds
=
[]
for
r
,
c
,
m
in
zip
(
flat_reference
,
flat_coords
,
flat_mask
):
r_unmasked_coords
=
select_unmasked_coords
(
r
,
m
)
c_unmasked_coords
=
select_unmasked_coords
(
c
,
m
)
superimposed
,
rmsd
=
_superimpose_single
(
r_unmasked_coords
,
c_unmasked_coords
)
# This is very inelegant, but idk how else to invert the masking
# procedure.
count
=
0
superimposed_full_size
=
torch
.
zeros_like
(
r
)
for
i
,
unmasked
in
enumerate
(
m
):
if
(
unmasked
):
superimposed_full_size
[
i
]
=
superimposed
[
count
]
count
+=
1
superimposed_list
.
append
(
superimposed_full_size
)
rmsds
.
append
(
rmsd
)
superimposed_stacked
=
torch
.
stack
(
superimposed_list
,
dim
=
0
)
rmsds_stacked
=
torch
.
stack
(
rmsds
,
dim
=
0
)
superimposed_reshaped
=
superimposed_stacked
.
reshape
(
batch_dims
+
coords
.
shape
[
-
2
:]
)
rmsds_reshaped
=
rmsds_stacked
.
reshape
(
batch_dims
)
return
superimposed_reshaped
,
rmsds_reshaped
\ No newline at end of file
fastfold/utils/validation_utils.py
0 → 100644
View file @
e9db72d6
# Copyright 2023 HPC-AI Tech Inc.
# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
torch
from
fastfold.model.hub.loss
import
lddt_ca
from
fastfold.common
import
residue_constants
from
fastfold.utils.superimposition
import
superimpose
def
drmsd
(
structure_1
,
structure_2
,
mask
=
None
):
def
prep_d
(
structure
):
d
=
structure
[...,
:,
None
,
:]
-
structure
[...,
None
,
:,
:]
d
=
d
**
2
d
=
torch
.
sqrt
(
torch
.
sum
(
d
,
dim
=-
1
))
return
d
d1
=
prep_d
(
structure_1
)
d2
=
prep_d
(
structure_2
)
drmsd
=
d1
-
d2
drmsd
=
drmsd
**
2
if
(
mask
is
not
None
):
drmsd
=
drmsd
*
(
mask
[...,
None
]
*
mask
[...,
None
,
:])
drmsd
=
torch
.
sum
(
drmsd
,
dim
=
(
-
1
,
-
2
))
n
=
d1
.
shape
[
-
1
]
if
mask
is
None
else
torch
.
sum
(
mask
,
dim
=-
1
)
drmsd
=
drmsd
*
(
1
/
(
n
*
(
n
-
1
)))
if
n
>
1
else
(
drmsd
*
0.
)
drmsd
=
torch
.
sqrt
(
drmsd
)
return
drmsd
def
drmsd_np
(
structure_1
,
structure_2
,
mask
=
None
):
structure_1
=
torch
.
tensor
(
structure_1
)
structure_2
=
torch
.
tensor
(
structure_2
)
if
(
mask
is
not
None
):
mask
=
torch
.
tensor
(
mask
)
return
drmsd
(
structure_1
,
structure_2
,
mask
)
def
gdt
(
p1
,
p2
,
mask
,
cutoffs
):
n
=
torch
.
sum
(
mask
,
dim
=-
1
)
p1
=
p1
.
float
()
p2
=
p2
.
float
()
distances
=
torch
.
sqrt
(
torch
.
sum
((
p1
-
p2
)
**
2
,
dim
=-
1
))
scores
=
[]
for
c
in
cutoffs
:
score
=
torch
.
sum
((
distances
<=
c
)
*
mask
,
dim
=-
1
)
/
n
score
=
torch
.
mean
(
score
)
scores
.
append
(
score
)
return
sum
(
scores
)
/
len
(
scores
)
def
gdt_ts
(
p1
,
p2
,
mask
):
return
gdt
(
p1
,
p2
,
mask
,
[
1.
,
2.
,
4.
,
8.
])
def
gdt_ha
(
p1
,
p2
,
mask
):
return
gdt
(
p1
,
p2
,
mask
,
[
0.5
,
1.
,
2.
,
4.
])
def
compute_validation_metrics
(
batch
,
outputs
,
superimposition_metrics
=
False
,
):
metrics
=
{}
gt_coords
=
batch
[
"all_atom_positions"
]
pred_coords
=
outputs
[
"final_atom_positions"
]
all_atom_mask
=
batch
[
"all_atom_mask"
]
# This is super janky for superimposition. Fix later
gt_coords_masked
=
gt_coords
*
all_atom_mask
[...,
None
]
pred_coords_masked
=
pred_coords
*
all_atom_mask
[...,
None
]
ca_pos
=
residue_constants
.
atom_order
[
"CA"
]
gt_coords_masked_ca
=
gt_coords_masked
[...,
ca_pos
,
:]
pred_coords_masked_ca
=
pred_coords_masked
[...,
ca_pos
,
:]
all_atom_mask_ca
=
all_atom_mask
[...,
ca_pos
]
lddt_ca_score
=
lddt_ca
(
pred_coords
,
gt_coords
,
all_atom_mask
,
eps
=
1e-8
,
per_residue
=
False
,
)
metrics
[
"lddt_ca"
]
=
lddt_ca_score
drmsd_ca_score
=
drmsd
(
pred_coords_masked_ca
,
gt_coords_masked_ca
,
mask
=
all_atom_mask_ca
,
# still required here to compute n
)
metrics
[
"drmsd_ca"
]
=
drmsd_ca_score
if
(
superimposition_metrics
):
superimposed_pred
,
alignment_rmsd
=
superimpose
(
gt_coords_masked_ca
,
pred_coords_masked_ca
,
all_atom_mask_ca
,
)
gdt_ts_score
=
gdt_ts
(
superimposed_pred
,
gt_coords_masked_ca
,
all_atom_mask_ca
)
gdt_ha_score
=
gdt_ha
(
superimposed_pred
,
gt_coords_masked_ca
,
all_atom_mask_ca
)
metrics
[
"alignment_rmsd"
]
=
alignment_rmsd
metrics
[
"gdt_ts"
]
=
gdt_ts_score
metrics
[
"gdt_ha"
]
=
gdt_ha_score
return
metrics
train.py
View file @
e9db72d6
import
os
import
random
import
random
import
torch
import
torch
import
numpy
as
np
import
numpy
as
np
...
@@ -6,19 +7,34 @@ from colossalai.logging import disable_existing_loggers, get_dist_logger
...
@@ -6,19 +7,34 @@ from colossalai.logging import disable_existing_loggers, get_dist_logger
from
colossalai.core
import
global_context
as
gpc
from
colossalai.core
import
global_context
as
gpc
from
colossalai.nn.optimizer
import
HybridAdam
from
colossalai.nn.optimizer
import
HybridAdam
from
tqdm
import
tqdm
from
fastfold.config
import
model_config
from
fastfold.config
import
model_config
from
fastfold.model.hub
import
AlphaFold
,
AlphaFoldLRScheduler
,
AlphaFoldLoss
from
fastfold.model.hub
import
AlphaFold
,
AlphaFoldLRScheduler
,
AlphaFoldLoss
from
fastfold.utils.inject_fastnn
import
inject_fastnn
from
fastfold.utils.inject_fastnn
import
inject_fastnn
from
fastfold.data.data_modules
import
SetupTrainDataset
,
TrainDataLoader
from
fastfold.data.data_modules
import
SetupTrainDataset
,
TrainDataLoader
from
fastfold.utils.tensor_utils
import
tensor_tree_map
from
fastfold.utils.tensor_utils
import
tensor_tree_map
from
fastfold.utils.validation_utils
import
compute_validation_metrics
import
logging
#
import logging
logging
.
disable
(
logging
.
WARNING
)
#
logging.disable(logging.WARNING)
import
torch.multiprocessing
import
torch.multiprocessing
torch
.
multiprocessing
.
set_sharing_strategy
(
'file_system'
)
torch
.
multiprocessing
.
set_sharing_strategy
(
'file_system'
)
def
log_loss
(
loss_breakdown
,
batch
,
outputs
,
train
=
True
):
loss_info
=
''
for
loss_name
,
loss_value
in
loss_breakdown
.
items
():
loss_info
+=
(
f
'
{
loss_name
}
='
+
"{:.3f}"
.
format
(
loss_value
))
with
torch
.
no_grad
():
other_metrics
=
compute_validation_metrics
(
batch
,
outputs
,
superimposition_metrics
=
(
not
train
)
)
for
loss_name
,
loss_value
in
other_metrics
.
items
():
loss_info
+=
(
f
'
{
loss_name
}
='
+
"{:.3f}"
.
format
(
loss_value
))
return
loss_info
def
main
():
def
main
():
parser
=
colossalai
.
get_default_parser
()
parser
=
colossalai
.
get_default_parser
()
parser
.
add_argument
(
'--from_torch'
,
default
=
False
,
action
=
'store_true'
)
parser
.
add_argument
(
'--from_torch'
,
default
=
False
,
action
=
'store_true'
)
...
@@ -117,6 +133,26 @@ def main():
...
@@ -117,6 +133,26 @@ def main():
"--seed"
,
type
=
int
,
default
=
42
,
"--seed"
,
type
=
int
,
default
=
42
,
help
=
"Random seed"
help
=
"Random seed"
)
)
parser
.
add_argument
(
"--max_epochs"
,
type
=
int
,
default
=
10000
,
help
=
"The Max epochs of train"
)
parser
.
add_argument
(
"--log_interval"
,
type
=
int
,
default
=
1
,
help
=
"The interval steps of logging during training"
)
parser
.
add_argument
(
"--log_path"
,
type
=
str
,
default
=
'train_log'
,
help
=
"The path of log folder"
)
parser
.
add_argument
(
"--save_ckpt_path"
,
type
=
str
,
default
=
None
,
help
=
"The path where to save checkpoint, None means not save"
)
parser
.
add_argument
(
"--save_ckpt_interval"
,
type
=
int
,
default
=
1
,
help
=
"The interval epochs of save checkpoint"
)
args
=
parser
.
parse_args
()
args
=
parser
.
parse_args
()
random
.
seed
(
args
.
seed
)
random
.
seed
(
args
.
seed
)
...
@@ -127,6 +163,7 @@ def main():
...
@@ -127,6 +163,7 @@ def main():
colossalai
.
launch_from_torch
(
config
=
dict
(
torch_ddp
=
dict
(
static_graph
=
True
)))
colossalai
.
launch_from_torch
(
config
=
dict
(
torch_ddp
=
dict
(
static_graph
=
True
)))
disable_existing_loggers
()
disable_existing_loggers
()
logger
=
get_dist_logger
()
logger
=
get_dist_logger
()
logger
.
log_to_file
(
args
.
log_path
)
config
=
model_config
(
args
.
config_preset
,
train
=
True
)
config
=
model_config
(
args
.
config_preset
,
train
=
True
)
config
.
globals
.
inplace
=
False
config
.
globals
.
inplace
=
False
...
@@ -179,38 +216,40 @@ def main():
...
@@ -179,38 +216,40 @@ def main():
test_dataloader
=
test_dataloader
,
test_dataloader
=
test_dataloader
,
)
)
for
epoch
in
range
(
200
):
logger
.
info
(
'Start training.'
,
ranks
=
[
0
])
for
epoch
in
range
(
args
.
max_epochs
):
engine
.
train
()
engine
.
train
()
if
gpc
.
get_global_rank
()
==
0
:
for
i
,
batch
in
enumerate
(
train_dataloader
):
train_dataloader
=
tqdm
(
train_dataloader
)
for
batch
in
train_dataloader
:
batch
=
{
k
:
torch
.
as_tensor
(
v
).
cuda
()
for
k
,
v
in
batch
.
items
()}
batch
=
{
k
:
torch
.
as_tensor
(
v
).
cuda
()
for
k
,
v
in
batch
.
items
()}
engine
.
zero_grad
()
output
=
engine
(
batch
)
output
=
engine
(
batch
)
batch
=
tensor_tree_map
(
lambda
t
:
t
[...,
-
1
],
batch
)
batch
=
tensor_tree_map
(
lambda
t
:
t
[...,
-
1
],
batch
)
loss
,
loss_breakdown
=
engine
.
criterion
(
loss
,
loss_breakdown
=
engine
.
criterion
(
output
,
batch
,
_return_breakdown
=
True
)
output
,
batch
,
_return_breakdown
=
True
)
if
gpc
.
get_global_rank
()
==
0
:
if
(
i
+
1
)
%
args
.
log_interval
==
0
:
train_dataloader
.
set_postfix
(
loss
=
float
(
loss
))
logger
.
info
(
f
'Training, Epoch:
{
epoch
}
, Step:
{
i
+
1
}
, Global_Step:
{
epoch
*
args
.
train_epoch_len
+
i
+
1
}
,'
+
f
' Loss:
{
log_loss
(
loss_breakdown
,
batch
,
output
)
}
'
,
ranks
=
[
0
])
engine
.
zero_grad
()
engine
.
backward
(
loss
)
engine
.
backward
(
loss
)
engine
.
step
()
engine
.
step
()
lr_scheduler
.
step
()
lr_scheduler
.
step
()
if
test_dataloader
is
not
None
:
if
test_dataloader
is
not
None
:
engine
.
eval
()
engine
.
eval
()
if
gpc
.
get_global_rank
()
==
0
:
for
i
,
batch
in
enumerate
(
test_dataloader
):
train_dataloader
=
tqdm
(
train_dataloader
)
for
batch
in
test_dataloader
:
batch
=
{
k
:
torch
.
as_tensor
(
v
).
cuda
()
for
k
,
v
in
batch
.
items
()}
batch
=
{
k
:
torch
.
as_tensor
(
v
).
cuda
()
for
k
,
v
in
batch
.
items
()}
with
torch
.
no_grad
():
with
torch
.
no_grad
():
output
=
engine
(
batch
)
output
=
engine
(
batch
)
batch
=
tensor_tree_map
(
lambda
t
:
t
[...,
-
1
],
batch
)
batch
=
tensor_tree_map
(
lambda
t
:
t
[...,
-
1
],
batch
)
batch
[
"use_clamped_fape"
]
=
0.
_
,
loss_breakdown
=
engine
.
criterion
(
_
,
loss_breakdown
=
engine
.
criterion
(
output
,
batch
,
_return_breakdown
=
True
)
output
,
batch
,
_return_breakdown
=
True
)
if
gpc
.
get_global_rank
()
==
0
:
logger
.
info
(
f
'Validation, Step:
{
i
+
1
}
,
\
train_dataloader
.
set_postfix
(
loss
=
float
(
loss
))
Loss:
{
log_loss
(
loss_breakdown
,
batch
,
output
,
False
)
}
'
,
ranks
=
[
0
])
if
(
args
.
save_ckpt_path
is
not
None
)
and
(
(
epoch
+
1
)
%
args
.
save_ckpt_interval
==
0
):
torch
.
save
(
engine
.
model
,
os
.
path
.
join
(
args
.
save_ckpt_path
,
'model.pth'
))
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
main
()
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment