inference.py 8.92 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time

import numpy as np
import torch

25
import fastfold
Shenggan's avatar
Shenggan committed
26
27
28
29
30
31
32
33
34
35
36
37
38
import openfold.np.relax.relax as relax
from fastfold.utils import inject_openfold
from openfold.config import model_config
from openfold.data import data_pipeline, feature_pipeline, templates
from openfold.model.model import AlphaFold
from openfold.model.torchscript import script_preset_
from openfold.np import protein, residue_constants
from openfold.utils.import_weights import import_jax_weights_
from openfold.utils.tensor_utils import tensor_tree_map
from scripts.utils import add_data_args


def main(args):
39
40
41
42
43
44
45
46
47
48
49
    # init distributed for Dynamic Axial Parallelism
    local_rank = int(os.getenv('LOCAL_RANK', -1))

    if local_rank != -1:
        distributed_inference_ = True
        torch.cuda.set_device(local_rank)
        torch.distributed.init_process_group(backend='nccl', init_method='env://')
        fastfold.distributed.init_dap(torch.distributed.get_world_size())
    else:
        distributed_inference_ = False

Shenggan's avatar
Shenggan committed
50
51
52
53
54
55
56
    config = model_config(args.model_name)
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

    model = inject_openfold(model)
    model = model.eval()
    #script_preset_(model)
57
    model = model.cuda()
Shenggan's avatar
Shenggan committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path)

    use_small_bfd = (args.bfd_database_path is None)

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
        lines = [l.strip() for l in fp.readlines()]

    tags, seqs = lines[::2], lines[1::2]
    tags = [l[1:] for l in tags]

    for tag, seq in zip(tags, seqs):
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        batch = [None]
        if (not distributed_inference_) or (torch.distributed.get_rank() == 0):
            fasta_path = os.path.join(args.output_dir, "tmp.fasta")
            with open(fasta_path, "w") as fp:
                fp.write(f">{tag}\n{seq}")

            print("Generating features...")
            local_alignment_dir = os.path.join(alignment_dir, tag)
            if (args.use_precomputed_alignments is None):
                if not os.path.exists(local_alignment_dir):
                    os.makedirs(local_alignment_dir)

                alignment_runner = data_pipeline.AlignmentRunner(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hhsearch_binary_path=args.hhsearch_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    pdb70_database_path=args.pdb70_database_path,
                    use_small_bfd=use_small_bfd,
                    no_cpus=args.cpus,
                )
                alignment_runner.run(fasta_path, local_alignment_dir)

            feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                                        alignment_dir=local_alignment_dir)

            # Remove temporary FASTA file
            os.remove(fasta_path)

            processed_feature_dict = feature_processor.process_features(
                feature_dict,
                mode='predict',
Shenggan's avatar
Shenggan committed
126
127
            )

128
            batch = [processed_feature_dict]
Shenggan's avatar
Shenggan committed
129

130
131
132
        if distributed_inference_:
            torch.distributed.broadcast_object_list(batch, src=0)
        batch = batch[0]
Shenggan's avatar
Shenggan committed
133
134

        print("Executing model...")
135

Shenggan's avatar
Shenggan committed
136
        with torch.no_grad():
137
            batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}
Shenggan's avatar
Shenggan committed
138
139
140
141
142

            t = time.perf_counter()
            out = model(batch)
            print(f"Inference time: {time.perf_counter() - t}")

143
144
145
146
147
148
149
        if distributed_inference_:
            torch.distributed.barrier()

        if (not distributed_inference_) or (torch.distributed.get_rank() == 0):
            # Toss out the recycling dimensions --- we don't need them anymore
            batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
            out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
Shenggan's avatar
Shenggan committed
150

151
152
            plddt = out["plddt"]
            mean_plddt = np.mean(plddt)
Shenggan's avatar
Shenggan committed
153

154
            plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
155

156
157
158
            unrelaxed_protein = protein.from_prediction(features=batch,
                                                        result=out,
                                                        b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
159

160
161
162
163
164
            # Save the unrelaxed PDB.
            unrelaxed_output_path = os.path.join(args.output_dir,
                                                 f'{tag}_{args.model_name}_unrelaxed.pdb')
            with open(unrelaxed_output_path, 'w') as f:
                f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
165

166
167
168
169
170
171
172
173
174
            amber_relaxer = relax.AmberRelaxation(
                use_gpu=True,
                **config.relax,
            )

            # Relax the prediction.
            t = time.perf_counter()
            relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
            print(f"Relaxation time: {time.perf_counter() - t}")
Shenggan's avatar
Shenggan committed
175

176
177
178
179
180
            # Save the relaxed PDB.
            relaxed_output_path = os.path.join(args.output_dir,
                                               f'{tag}_{args.model_name}_relaxed.pdb')
            with open(relaxed_output_path, 'w') as f:
                f.write(relaxed_pdb_str)
Shenggan's avatar
Shenggan committed
181

182
183
        if distributed_inference_:
            torch.distributed.barrier()
Shenggan's avatar
Shenggan committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
             model_{1-5}_ptm, as defined on the AlphaFold GitHub.""")
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
             openfold/resources/params""")
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
    parser.add_argument('--preset',
                        type=str,
                        default='reduced_dbs',
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
        args.param_path = os.path.join("openfold", "resources", "params",
                                       "params_" + args.model_name + ".npz")

    main(args)