"vscode:/vscode.git/clone" did not exist on "08e8e922fd71a0650dfd2c05d1dcf883f1be0357"
setup.py 5.55 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
import os
import subprocess

import torch
from setuptools import setup, find_packages
zhuww's avatar
zhuww committed
6
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, ROCM_HOME
Shenggan's avatar
Shenggan committed
7

zhuww's avatar
zhuww committed
8
9
10
11
12
from typing import Optional, Union
import subprocess
from pathlib import Path


Shenggan's avatar
Shenggan committed
13
14
15
16
17
# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
zhuww's avatar
zhuww committed
18
19
    torch_binary_major = torch.version.hip.split(".")[0]
    torch_binary_minor = torch.version.hip.split(".")[1]
Shenggan's avatar
Shenggan committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

    print("\nCompiling cuda extensions with")

def append_nvcc_threads(nvcc_extra_args):
    return nvcc_extra_args


if not torch.cuda.is_available():
    # https://github.com/NVIDIA/apex/issues/486
    # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
    # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
    print(
        '\nWarning: Torch did not find available GPUs on this system.\n',
        'If your intention is to cross-compile, this is not an error.\n'
        'By default, FastFold will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n'
        'Volta (compute capability 7.0), Turing (compute capability 7.5),\n'
        'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n'
        'If you wish to cross-compile for a single specific architecture,\n'
        'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n')

print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])

if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 10):
    raise RuntimeError("FastFold requires Pytorch 1.10 or newer.\n" +
                       "The latest stable release can be obtained from https://pytorch.org/")

cmdclass = {}
ext_modules = []

# Set up macros for forward/backward compatibility hack around
# https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e
# and
# https://github.com/NVIDIA/apex/issues/456
# https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac
version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5']

zhuww's avatar
zhuww committed
58
if ROCM_HOME is None:
Shenggan's avatar
Shenggan committed
59
60
61
62
    raise RuntimeError(
        "Are you sure your environment has nvcc available?  If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, only images whose names contain 'devel' will provide nvcc."
    )
else:
zhuww's avatar
zhuww committed
63
    # check_cuda_torch_binary_vs_bare_metal(ROCM_HOME)
Shenggan's avatar
Shenggan committed
64
65
66
67
68

    def cuda_ext_helper(name, sources, extra_cuda_flags):
        return CUDAExtension(
            name=name,
            sources=[
69
                os.path.join('fastfold/model/fastnn/kernel/cuda_native/csrc', path) for path in sources
Shenggan's avatar
Shenggan committed
70
71
            ],
            include_dirs=[
zhuww's avatar
zhuww committed
72
73
                os.path.join(this_dir, 'fastfold/model/fastnn/kernel/cuda_native/csrc/include'),
                os.path.join(this_dir, 'fastfold/model/fastnn/kernel/cuda_native/csrc/'),
Shenggan's avatar
Shenggan committed
74
75
76
            ],
            extra_compile_args={
                'cxx': ['-O3'] + version_dependent_macros,
zhuww's avatar
zhuww committed
77
                'hipcc':
Shenggan's avatar
Shenggan committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
                    append_nvcc_threads(['-O3', '--use_fast_math'] + version_dependent_macros +
                                        extra_cuda_flags)
            })



    cc_flag = ['-gencode', 'arch=compute_70,code=sm_70']

    extra_cuda_flags = [
        '-std=c++14', '-maxrregcount=50', '-U__CUDA_NO_HALF_OPERATORS__',
        '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr', '--expt-extended-lambda'
    ]

    ext_modules.append(
        cuda_ext_helper('fastfold_layer_norm_cuda',
                        ['layer_norm_cuda.cpp', 'layer_norm_cuda_kernel.cu'],
                        extra_cuda_flags + cc_flag))

    ext_modules.append(
        cuda_ext_helper('fastfold_softmax_cuda', ['softmax_cuda.cpp', 'softmax_cuda_kernel.cu'],
                        extra_cuda_flags + cc_flag))
Shenggan's avatar
Shenggan committed
99

zhuww's avatar
zhuww committed
100
101
102
103
104
105
106
107
108

def get_sha(pytorch_root: Union[str, Path]) -> str:
    try:
        return subprocess.check_output(['git', 'rev-parse', 'HEAD'], cwd=pytorch_root).decode('ascii').strip()
    except Exception:
        return 'Unknown'


def get_version_add(sha: Optional[str] = None) -> str:
zhuww's avatar
zhuww committed
109
    add_version_path = "version.py"
zhuww's avatar
zhuww committed
110
111
112
113
114
115
116
117
118
119
120
    if sha != 'Unknown':
        if sha is None:
            sha_path = os.getenv('FASTFOLD_DOWNLOAD_PATH', "")
            sha = get_sha(sha_path)
        version = 'git' + sha[:7]

    if os.getenv('FASTFOLD_BUILD_VERSION'):
        version_dtk = os.getenv('FASTFOLD_BUILD_VERSION', "")
        version += "." + version_dtk

    with open(add_version_path, encoding="utf-8", mode="w") as file:
zhuww's avatar
zhuww committed
121
        file.write("__version__='0.2.1'+'+{}'\n".format(version))
zhuww's avatar
zhuww committed
122
123
124
125
126
127
128
129
130
131
132
    file.close()


def get_version():
    get_version_add()
    version_file = 'version.py'
    with open(version_file, encoding='utf-8') as f:
        exec(compile(f.read(), version_file, 'exec'))
    return locals()['__version__']


Shenggan's avatar
Shenggan committed
133
134
setup(
    name='fastfold',
zhuww's avatar
zhuww committed
135
    version=get_version(),
Shenggan's avatar
Shenggan committed
136
137
138
139
140
141
142
143
    packages=find_packages(exclude=(
        'assets',
        'benchmark',
        '*.egg-info',
    )),
    description=
    'Optimizing Protein Structure Prediction Model Training and Inference on GPU Clusters',
    ext_modules=ext_modules,
zhuww's avatar
zhuww committed
144
    package_data={'fastfold': ['model/fastnn/kernel/cuda_native/csrc/*', 'common/stereo_chemical_props.txt']},
Shenggan's avatar
Shenggan committed
145
    cmdclass={'build_ext': BuildExtension} if ext_modules else {},
zhuww's avatar
zhuww committed
146
    install_requires=['einops', 'colossalai'],
Shenggan's avatar
Shenggan committed
147
)