setup.py 6.1 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import os
import subprocess

import torch
from setuptools import setup, find_packages
from torch.utils.cpp_extension import BuildExtension, CUDAExtension, CUDA_HOME

# ninja build does not work unless include_dirs are abs path
this_dir = os.path.dirname(os.path.abspath(__file__))


def get_cuda_bare_metal_version(cuda_dir):
    raw_output = subprocess.check_output([cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True)
    output = raw_output.split()
    release_idx = output.index("release") + 1
    release = output[release_idx].split(".")
    bare_metal_major = release[0]
    bare_metal_minor = release[1][0]

    return raw_output, bare_metal_major, bare_metal_minor


def check_cuda_torch_binary_vs_bare_metal(cuda_dir):
    raw_output, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(cuda_dir)
    torch_binary_major = torch.version.cuda.split(".")[0]
    torch_binary_minor = torch.version.cuda.split(".")[1]

    print("\nCompiling cuda extensions with")
    print(raw_output + "from " + cuda_dir + "/bin\n")

    if (bare_metal_major != torch_binary_major) or (bare_metal_minor != torch_binary_minor):
        raise RuntimeError(
            "Cuda extensions are being compiled with a version of Cuda that does " +
            "not match the version used to compile Pytorch binaries.  " +
            "Pytorch binaries were compiled with Cuda {}.\n".format(torch.version.cuda) +
            "In some cases, a minor-version mismatch will not cause later errors:  " +
            "https://github.com/NVIDIA/apex/pull/323#discussion_r287021798.  "
            "You can try commenting out this check (at your own risk).")


def append_nvcc_threads(nvcc_extra_args):
    _, bare_metal_major, bare_metal_minor = get_cuda_bare_metal_version(CUDA_HOME)
    if int(bare_metal_major) >= 11 and int(bare_metal_minor) >= 2:
        return nvcc_extra_args + ["--threads", "4"]
    return nvcc_extra_args


if not torch.cuda.is_available():
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    print("======== NOTICE: torch.cuda.is_available == False")
#     # https://github.com/NVIDIA/apex/issues/486
#     # Extension builds after https://github.com/pytorch/pytorch/pull/23408 attempt to query torch.cuda.get_device_capability(),
#     # which will fail if you are compiling in an environment without visible GPUs (e.g. during an nvidia-docker build command).
#     print(
#         '\nWarning: Torch did not find available GPUs on this system.\n',
#         'If your intention is to cross-compile, this is not an error.\n'
#         'By default, FastFold will cross-compile for Pascal (compute capabilities 6.0, 6.1, 6.2),\n'
#         'Volta (compute capability 7.0), Turing (compute capability 7.5),\n'
#         'and, if the CUDA version is >= 11.0, Ampere (compute capability 8.0).\n'
#         'If you wish to cross-compile for a single specific architecture,\n'
#         'export TORCH_CUDA_ARCH_LIST="compute capability" before running setup.py.\n')
#     if os.environ.get("TORCH_CUDA_ARCH_LIST", None) is None:
#         _, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
#         if int(bare_metal_major) == 11:
#             os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5;8.0"
#         else:
#             os.environ["TORCH_CUDA_ARCH_LIST"] = "6.0;6.1;6.2;7.0;7.5"
Shenggan's avatar
Shenggan committed
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

print("\n\ntorch.__version__  = {}\n\n".format(torch.__version__))
TORCH_MAJOR = int(torch.__version__.split('.')[0])
TORCH_MINOR = int(torch.__version__.split('.')[1])

if TORCH_MAJOR < 1 or (TORCH_MAJOR == 1 and TORCH_MINOR < 10):
    raise RuntimeError("FastFold requires Pytorch 1.10 or newer.\n" +
                       "The latest stable release can be obtained from https://pytorch.org/")

cmdclass = {}
ext_modules = []

# Set up macros for forward/backward compatibility hack around
# https://github.com/pytorch/pytorch/commit/4404762d7dd955383acee92e6f06b48144a0742e
# and
# https://github.com/NVIDIA/apex/issues/456
# https://github.com/pytorch/pytorch/commit/eb7b39e02f7d75c26d8a795ea8c7fd911334da7e#diff-4632522f237f1e4e728cb824300403ac
version_dependent_macros = ['-DVERSION_GE_1_1', '-DVERSION_GE_1_3', '-DVERSION_GE_1_5']

86
if CUDA_HOME:
shenggan's avatar
shenggan committed
87
    # check_cuda_torch_binary_vs_bare_metal(CUDA_HOME)
Shenggan's avatar
Shenggan committed
88
89
90
91
92

    def cuda_ext_helper(name, sources, extra_cuda_flags):
        return CUDAExtension(
            name=name,
            sources=[
93
                os.path.join('fastfold/model/fastnn/kernel/cuda_native/csrc', path) for path in sources
Shenggan's avatar
Shenggan committed
94
95
            ],
            include_dirs=[
96
                os.path.join(this_dir, 'fastfold/model/fastnn/kernel/cuda_native/csrc/include')
Shenggan's avatar
Shenggan committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
            ],
            extra_compile_args={
                'cxx': ['-O3'] + version_dependent_macros,
                'nvcc':
                    append_nvcc_threads(['-O3', '--use_fast_math'] + version_dependent_macros +
                                        extra_cuda_flags)
            })



    cc_flag = ['-gencode', 'arch=compute_70,code=sm_70']
    _, bare_metal_major, _ = get_cuda_bare_metal_version(CUDA_HOME)
    if int(bare_metal_major) >= 11:
        cc_flag.append('-gencode')
        cc_flag.append('arch=compute_80,code=sm_80')

    extra_cuda_flags = [
        '-std=c++14', '-maxrregcount=50', '-U__CUDA_NO_HALF_OPERATORS__',
        '-U__CUDA_NO_HALF_CONVERSIONS__', '--expt-relaxed-constexpr', '--expt-extended-lambda'
    ]

    ext_modules.append(
        cuda_ext_helper('fastfold_layer_norm_cuda',
                        ['layer_norm_cuda.cpp', 'layer_norm_cuda_kernel.cu'],
                        extra_cuda_flags + cc_flag))

    ext_modules.append(
        cuda_ext_helper('fastfold_softmax_cuda', ['softmax_cuda.cpp', 'softmax_cuda_kernel.cu'],
                        extra_cuda_flags + cc_flag))
126
127
else:
    print("======== NOTICE: install without cuda kernel")
Shenggan's avatar
Shenggan committed
128
129
130

setup(
    name='fastfold',
131
    version='0.2.0',
Shenggan's avatar
Shenggan committed
132
133
134
135
136
137
138
139
    packages=find_packages(exclude=(
        'assets',
        'benchmark',
        '*.egg-info',
    )),
    description=
    'Optimizing Protein Structure Prediction Model Training and Inference on GPU Clusters',
    ext_modules=ext_modules,
140
    package_data={'fastfold': ['model/fastnn/kernel/cuda_native/csrc/*']},
Shenggan's avatar
Shenggan committed
141
    cmdclass={'build_ext': BuildExtension} if ext_modules else {},
142
    install_requires=['einops', 'colossalai'],
Shenggan's avatar
Shenggan committed
143
)