test_msa_att_col.py 3.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
import torch
import pytest
import os
import copy
import torch.multiprocessing as mp
from functools import partial
import fastfold
from fastfold.config import model_config
from fastfold.model.fastnn.ops import set_chunk_size
from fastfold.model.hub import AlphaFold
from fastfold.utils.inject_fastnn import inject_fastnn
from fastfold.utils.import_weights import import_jax_weights_
fengzch-das's avatar
fengzch-das committed
13
14
from colossalai.legacy.context.parallel_mode import ParallelMode
from colossalai.legacy.core import global_context as gpc
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from fastfold.distributed.comm import gather, scatter, row_to_col
from fastfold.utils.test_utils import get_param_path


@pytest.fixture(scope="module")
def get_openfold_module_and_data():
    with torch.no_grad():
        config = model_config('model_1')
        config.globals.inplace = False
        target_module = AlphaFold(config)
        import_jax_weights_(target_module, get_param_path())

        fast_module = copy.deepcopy(target_module)
        fast_module = inject_fastnn(fast_module)
        fast_module = fast_module.evoformer.blocks[0].msa.MSAColumnAttention.eval().cuda()
        target_module = target_module.evoformer.blocks[0].msa_att_col.eval().cuda()

        msa_len = 300
        seq_len = 300
        m = torch.randn((msa_len, seq_len, 256)).cuda()
        m_mask = torch.ones((msa_len, seq_len)).cuda().to(dtype=m.dtype)
        m_out = m + target_module(m, mask=m_mask, chunk_size=None)
    return m_out, m, m_mask, fast_module


@pytest.mark.parametrize('world_size', [1, 2])
@pytest.mark.parametrize('chunk_size', [None, 32])
def test_state_dict(world_size, chunk_size, get_openfold_module_and_data):
    run_func = partial(_test_msa_att_col, world_size=world_size, chunk_size=chunk_size, get_openfold_module_and_data=get_openfold_module_and_data)
    mp.spawn(run_func, nprocs=world_size)


def _test_msa_att_col(rank, world_size, chunk_size, get_openfold_module_and_data):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
    # init distributed for Dynamic Axial Parallelism
    fastfold.distributed.init_dap()

    m_out, m, m_mask, fast_module = get_openfold_module_and_data
    fast_module = copy.deepcopy(fast_module).cuda()
    
    fast_m = copy.deepcopy(m.cuda()).unsqueeze(0)
    dap_size = gpc.get_world_size(ParallelMode.TENSOR)
    seq_length = m_mask.cuda().size(-1)
    padding_size = (int(seq_length / dap_size) + 1) * dap_size - seq_length
    fast_m = torch.nn.functional.pad(fast_m, (0, 0, 0, padding_size))
    fast_m = scatter(fast_m, dim=1)
    fast_m_mask = copy.deepcopy(m_mask.cuda()).unsqueeze(0)
    fast_m_mask = torch.nn.functional.pad(fast_m_mask, (0, padding_size))

    with torch.no_grad():
        set_chunk_size(chunk_size)
        fast_m = row_to_col(fast_m)
        fast_m_mask = scatter(fast_m_mask, dim=2)
        m_fast = fast_module(fast_m, fast_m_mask)
        m_fast = m_fast.squeeze(0)
        m_fast = gather(m_fast, dim=1)
        m_fast = m_fast[:, :-padding_size, :]

    error = torch.max(torch.abs(m_out.cuda() - m_fast))
oahzxl's avatar
oahzxl committed
76
    assert error < 1e-4, f"Test m failed at chunk size: {chunk_size}. The position dif is {error}"