README.md 6.3 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
![](/assets/fold.jpg)

shenggan's avatar
shenggan committed
3
# FastFold
Shenggan's avatar
Shenggan committed
4

Shenggan's avatar
Shenggan committed
5
[![](https://img.shields.io/badge/Paper-PDF-green?style=flat&logo=arXiv&logoColor=green)](https://arxiv.org/abs/2203.00854)
Shenggan's avatar
Shenggan committed
6
![](https://img.shields.io/badge/Made%20with-ColossalAI-blueviolet?style=flat)
Shenggan's avatar
Shenggan committed
7
8
![](https://img.shields.io/github/v/release/hpcaitech/FastFold)
[![GitHub license](https://img.shields.io/github/license/hpcaitech/FastFold)](https://github.com/hpcaitech/FastFold/blob/main/LICENSE)
Shenggan's avatar
Shenggan committed
9

shenggan's avatar
shenggan committed
10
Optimizing Protein Structure Prediction Model Training and Inference on GPU Clusters
Shenggan's avatar
Shenggan committed
11
12
13
14
15
16

FastFold provides a **high-performance implementation of Evoformer** with the following characteristics.

1. Excellent kernel performance on GPU platform
2. Supporting Dynamic Axial Parallelism(DAP)
    * Break the memory limit of single GPU and reduce the overall training time
Shenggan's avatar
Shenggan committed
17
    * DAP can significantly speed up inference and make ultra-long sequence inference possible
Shenggan's avatar
Shenggan committed
18
3. Ease of use
Shenggan's avatar
Shenggan committed
19
    * Huge performance gains with a few lines changes
Shenggan's avatar
Shenggan committed
20
    * You don't need to care about how the parallel part is implemented
LuGY's avatar
LuGY committed
21
4. Faster data processing, about 3x times faster than the original way
Shenggan's avatar
Shenggan committed
22
23
24

## Installation

25
To install and use FastFold, you will need:
LuGY's avatar
LuGY committed
26
+ Python 3.8 or 3.9.
27
28
29
+ [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads) 11.1 or above
+ PyTorch 1.10 or above 

LuGY's avatar
LuGY committed
30

31
32
33
34
35
For now, You can install FastFold:
### Using Conda (Recommended)

We highly recommend installing an Anaconda or Miniconda environment and install PyTorch with conda.
Lines below would create a new conda environment called "fastfold":
Shenggan's avatar
Shenggan committed
36

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
37
38
39
```shell
git clone https://github.com/hpcaitech/FastFold
cd FastFold
Shenggan's avatar
Shenggan committed
40
conda env create --name=fastfold -f environment.yml
Shenggan's avatar
Shenggan committed
41
conda activate fastfold
Shenggan's avatar
Shenggan committed
42
bash scripts/patch_openmm.sh
43
python setup.py install
Shenggan's avatar
Shenggan committed
44
45
```

46
47
### Using PyPi
You can download FastFold with pre-built CUDA extensions.
Shenggan's avatar
Shenggan committed
48
49

```shell
50
51
52
53
54
55
56
57
58
59
60
61
pip install fastfold -f https://release.colossalai.org/fastfold
```

## Use Docker

### Build On Your Own
Run the following command to build a docker image from Dockerfile provided.

> Building FastFold from scratch requires GPU support, you need to use Nvidia Docker Runtime as the default when doing `docker build`. More details can be found [here](https://stackoverflow.com/questions/59691207/docker-build-with-nvidia-runtime).

```shell
cd ColossalAI
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
62
docker build -t Fastfold ./docker
63
64
65
66
67
```

Run the following command to start the docker container in interactive mode.
```shell
docker run -ti --gpus all --rm --ipc=host fastfold bash
Shenggan's avatar
Shenggan committed
68
69
```

Shenggan's avatar
Shenggan committed
70
71
## Usage

72
You can use `Evoformer` as `nn.Module` in your project after `from fastfold.model.fastnn import Evoformer`:
Shenggan's avatar
Shenggan committed
73
74

```python
75
from fastfold.model.fastnn import Evoformer
Shenggan's avatar
Shenggan committed
76
77
78
evoformer_layer = Evoformer()
```

Shenggan's avatar
Shenggan committed
79
If you want to use Dynamic Axial Parallelism, add a line of initialize with `fastfold.distributed.init_dap`.
Shenggan's avatar
Shenggan committed
80
81
82
83
84
85
86

```python
from fastfold.distributed import init_dap

init_dap(args.dap_size)
```

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
87
88
89
90
91
### Download the dataset
You can down the dataset used to train FastFold  by the script `download_all_data.sh`:

    ./scripts/download_all_data.sh data/

92
93
### Inference

Shenggan's avatar
Shenggan committed
94
You can use FastFold with `inject_fastnn`. This will replace the evoformer from OpenFold with the high performance evoformer from FastFold.
95
96

```python
97
from fastfold.utils import inject_fastnn
98
99
100
101

model = AlphaFold(config)
import_jax_weights_(model, args.param_path, version=args.model_name)

102
model = inject_fastnn(model)
103
104
105
106
107
```

For Dynamic Axial Parallelism, you can refer to `./inference.py`. Here is an example of 2 GPUs parallel inference:

```shell
108
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
Shenggan's avatar
Shenggan committed
109
    --output_dir ./ \
110
    --gpus 2 \
111
112
113
114
115
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
Shenggan's avatar
Shenggan committed
116
117
118
119
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`
120
```
LuGY's avatar
LuGY committed
121
122
123
124
125
126
or run the script `./inference.sh`, you can change the parameter in the script, especisally those data path.
```shell
./inference.sh
```

#### inference with data workflow
lclgy's avatar
lclgy committed
127
Alphafold's data pre-processing takes a lot of time, so we speed up the data pre-process by [ray](https://docs.ray.io/en/latest/workflows/concepts.html) workflow, which achieves a 3x times faster speed. To run the inference with ray workflow, you should install the package and add parameter `--enable_workflow` to cmdline or shell script `./inference.sh`
LuGY's avatar
LuGY committed
128
```shell
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
129
pip install ray==2.0.0 pyarrow
LuGY's avatar
LuGY committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
```
```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`  \
    --enable_workflow 
```

147

Shenggan's avatar
Shenggan committed
148
149
150
151
152
153
154
155
156
## Performance Benchmark

We have included a performance benchmark script in `./benchmark`. You can benchmark the performance of Evoformer using different settings.

```shell
cd ./benchmark
torchrun --nproc_per_node=1 perf.py --msa-length 128 --res-length 256
```

Shenggan's avatar
Shenggan committed
157
158
159
160
161
162
163
Benchmark Dynamic Axial Parallelism with 2 GPUs:

```shell
cd ./benchmark
torchrun --nproc_per_node=2 perf.py --msa-length 128 --res-length 256 --dap-size 2
```

Shenggan's avatar
Shenggan committed
164
165
166
167
168
169
170
171
172
173
174
If you want to benchmark with [OpenFold](https://github.com/aqlaboratory/openfold), you need to install OpenFold first and benchmark with option `--openfold`:

```shell
torchrun --nproc_per_node=1 perf.py --msa-length 128 --res-length 256 --openfold
```

## Cite us

Cite this paper, if you use FastFold in your research publication.

```
Shenggan's avatar
Shenggan committed
175
176
177
178
179
180
181
182
@misc{cheng2022fastfold,
      title={FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours}, 
      author={Shenggan Cheng and Ruidong Wu and Zhongming Yu and Binrui Li and Xiwen Zhang and Jian Peng and Yang You},
      year={2022},
      eprint={2203.00854},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Shenggan's avatar
Shenggan committed
183
```