"src/targets/gpu/vscode:/vscode.git/clone" did not exist on "d7d84f5597d9600c47cd27c83a1b97833e0efcad"
README_ORIGIN.md 8.92 KB
Newer Older
zhuwenwen's avatar
zhuwenwen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
![](/assets/fold.jpg)

# FastFold

[![](https://img.shields.io/badge/Paper-PDF-green?style=flat&logo=arXiv&logoColor=green)](https://arxiv.org/abs/2203.00854)
![](https://img.shields.io/badge/Made%20with-ColossalAI-blueviolet?style=flat)
![](https://img.shields.io/github/v/release/hpcaitech/FastFold)
[![GitHub license](https://img.shields.io/github/license/hpcaitech/FastFold)](https://github.com/hpcaitech/FastFold/blob/main/LICENSE)

Optimizing Protein Structure Prediction Model Training and Inference on GPU Clusters

FastFold provides a **high-performance implementation of Evoformer** with the following characteristics.

1. Excellent kernel performance on GPU platform
2. Supporting Dynamic Axial Parallelism(DAP)
    * Break the memory limit of single GPU and reduce the overall training time
    * DAP can significantly speed up inference and make ultra-long sequence inference possible
3. Ease of use
    * Huge performance gains with a few lines changes
    * You don't need to care about how the parallel part is implemented
4. Faster data processing, about 3x times faster on monomer, about 3Nx times faster on multimer with N sequence.
5. Great Reduction on GPU memory, able to inference sequence containing more than **10000** residues.

## Installation

To install FastFold, you will need:
+ Python 3.8 or 3.9.
+ [NVIDIA CUDA](https://developer.nvidia.com/cuda-downloads) 11.1 or above
+ PyTorch 1.12 or above 


For now, You can install FastFold:
### Using Conda (Recommended)

We highly recommend installing an Anaconda or Miniconda environment and install PyTorch with conda.
Lines below would create a new conda environment called "fastfold":

```shell
git clone https://github.com/hpcaitech/FastFold
cd FastFold
conda env create --name=fastfold -f environment.yml
conda activate fastfold
python setup.py install
```

#### Advanced

To leverage the power of FastFold, we recommend you to install [Triton](https://github.com/openai/triton).

```bash
pip install triton==2.0.0.dev20221005
```


### Using PyPi
You can download FastFold with pre-built CUDA extensions.

Warning, only stable versions available.

```shell
pip install fastfold -f https://release.colossalai.org/fastfold
```

## Use Docker

### Build On Your Own
Run the following command to build a docker image from Dockerfile provided.

> Building FastFold from scratch requires GPU support, you need to use Nvidia Docker Runtime as the default when doing `docker build`. More details can be found [here](https://stackoverflow.com/questions/59691207/docker-build-with-nvidia-runtime).

```shell
cd FastFold
docker build -t fastfold ./docker
```

Run the following command to start the docker container in interactive mode.
```shell
docker run -ti --gpus all --rm --ipc=host fastfold bash
```

## Usage

You can use `Evoformer` as `nn.Module` in your project after `from fastfold.model.fastnn import Evoformer`:

```python
from fastfold.model.fastnn import Evoformer
evoformer_layer = Evoformer()
```

If you want to use Dynamic Axial Parallelism, add a line of initialize with `fastfold.distributed.init_dap`.

```python
from fastfold.distributed import init_dap

init_dap(args.dap_size)
```

### Download the dataset
You can down the dataset used to train FastFold  by the script `download_all_data.sh`:

    ./scripts/download_all_data.sh data/

### Inference

You can use FastFold with `inject_fastnn`. This will replace the evoformer from OpenFold with the high performance evoformer from FastFold.

```python
from fastfold.utils import inject_fastnn

model = AlphaFold(config)
import_jax_weights_(model, args.param_path, version=args.model_name)

model = inject_fastnn(model)
```

For Dynamic Axial Parallelism, you can refer to `./inference.py`. Here is an example of 2 GPUs parallel inference:

```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`
```
or run the script `./inference.sh`, you can change the parameter in the script, especisally those data path.
```shell
./inference.sh
```

#### inference with data workflow
Alphafold's data pre-processing takes a lot of time, so we speed up the data pre-process by [ray](https://docs.ray.io/en/latest/workflows/concepts.html) workflow, which achieves a 3x times faster speed. To run the inference with ray workflow, you should install the package and add parameter `--enable_workflow` to cmdline or shell script `./inference.sh`
```shell
pip install ray==2.0.0 pyarrow
```
```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`  \
    --enable_workflow 
```

#### inference with lower memory usage
Alphafold's embedding presentations take up a lot of memory as the sequence length increases. To reduce memory usage, 
you should add parameter `--chunk_size [N]` and `--inplace` to cmdline or shell script `./inference.sh`. 
The smaller you set N, the less memory will be used, but it will affect the speed. We can inference 
a sequence of length 10000 in bf16 with 61GB memory on a Nvidia A100(80GB). For fp32, the max length is 8000.
> You need to set `PYTORCH_CUDA_ALLOC_CONF=max_split_size_mb:15000` to inference such an extreme long sequence.

```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`  \
    --chunk_size N \
    --inplace
```

#### inference multimer sequence
Alphafold Multimer is supported. You can the following cmd or shell script `./inference_multimer.sh`.
Workflow and memory parameters mentioned above can also be used.
```shell
python inference.py target.fasta data/pdb_mmcif/mmcif_files/ \
    --output_dir ./ \
    --gpus 2 \
    --model_preset multimer \
    --uniref90_database_path data/uniref90/uniref90.fasta \
    --mgnify_database_path data/mgnify/mgy_clusters_2018_12.fa \
    --pdb70_database_path data/pdb70/pdb70 \
    --uniclust30_database_path data/uniclust30/uniclust30_2018_08/uniclust30_2018_08 \
    --bfd_database_path data/bfd/bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt \
    --uniprot_database_path data/uniprot/uniprot_sprot.fasta \
    --pdb_seqres_database_path data/pdb_seqres/pdb_seqres.txt  \
    --param_path data/params/params_model_1_multimer.npz \
    --model_name model_1_multimer \
    --jackhmmer_binary_path `which jackhmmer` \
    --hhblits_binary_path `which hhblits` \
    --hhsearch_binary_path `which hhsearch` \
    --kalign_binary_path `which kalign`
```

## Performance Benchmark

We have included a performance benchmark script in `./benchmark`. You can benchmark the performance of Evoformer using different settings.

```shell
cd ./benchmark
torchrun --nproc_per_node=1 perf.py --msa-length 128 --res-length 256
```

Benchmark Dynamic Axial Parallelism with 2 GPUs:

```shell
cd ./benchmark
torchrun --nproc_per_node=2 perf.py --msa-length 128 --res-length 256 --dap-size 2
```

If you want to benchmark with [OpenFold](https://github.com/aqlaboratory/openfold), you need to install OpenFold first and benchmark with option `--openfold`:

```shell
torchrun --nproc_per_node=1 perf.py --msa-length 128 --res-length 256 --openfold
```

## Cite us

Cite this paper, if you use FastFold in your research publication.

```
@misc{cheng2022fastfold,
      title={FastFold: Reducing AlphaFold Training Time from 11 Days to 67 Hours}, 
      author={Shenggan Cheng and Ruidong Wu and Zhongming Yu and Binrui Li and Xiwen Zhang and Jian Peng and Yang You},
      year={2022},
      eprint={2203.00854},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
```