learned_nonlin_test.py 11.6 KB
Newer Older
Daniel Povey's avatar
Daniel Povey committed
1
import random
Daniel Povey's avatar
Daniel Povey committed
2
import torch
3
from torch_learned_nonlin import learned_nonlin
Daniel Povey's avatar
Daniel Povey committed
4
5


6
7
8
9
10
11
12
13
14
15
16
def test_learned_nonlin_basic():
    for dtype in [torch.float32, torch.float64]:
        B = 2
        C = 4
        T = 10
        x = -2.0 + 0.4 * torch.arange(10, dtype=dtype)
        x = x.reshape(1, 1, 10).repeat(B, C, 1)

        K = 4
        N = K * 2
        params = torch.arange(N + 1, dtype=dtype).unsqueeze(0) + torch.arange(C, dtype=dtype).unsqueeze(1)
Daniel Povey's avatar
Daniel Povey committed
17
18
        x.requires_grad = True
        params.requires_grad = True
19
20
21
22
        print("x = ", x)
        print("params = ", params)
        print("x.shape = ", x.shape)
        y = learned_nonlin(x, params, dim = 1)
23

24
25
        print("y = ", y)

26
27
28
29
30
31
32
33
34
        if torch.cuda.is_available():
            # test that the CUDA forward is the same as the CPU forward.
            device = torch.device('cuda:0')
            y2 = learned_nonlin(x.to(device), params.to(device), dim = 1).to(torch.device('cpu'))
            print("Checking CUDA is same")
            if not torch.allclose(y, y2, atol=1.0e-06):
                print(f"Error: CPU versus CUDA not the same: {y} vs. {y2}, diff = {y2-y}")
                assert(0);

Daniel Povey's avatar
Daniel Povey committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        y.sum().backward()

        print("x.grad = ", x.grad)
        print("params.grad = ", params.grad)

        # Just eyeballing the above tgo make sure it looks reasonable.


def test_learned_nonlin_deriv():
    """ Tests derivatives in randomized way """
    for _ in range(10):
        for dtype in [torch.float32, torch.float64]:
            B = random.randrange(1, 10)
            C = random.randrange(1, 10)
            T = random.randrange(1, 20)
            x = torch.randn(B, C, T, dtype=dtype)

            K = 2 ** random.randrange(0, 4)
            N = K * 2
            params = torch.randn(C, N + 1, dtype=dtype)
            x.requires_grad = True
            params.requires_grad = True
            print(f"B,C,T,K = {B},{C},{T},{K}")
            y = learned_nonlin(x, params, dim = 1)

60
61
62
63
64
65

            if torch.cuda.is_available():
                # test that the CUDA forward is the same as the CPU forward.
                device = torch.device('cuda:0')
                y2 = learned_nonlin(x.to(device), params.to(device), dim = 1).to(torch.device('cpu'))
                print("Checking CUDA is same")
66
                if not torch.allclose(y, y2, atol=1.0e-05):
67
                    print(f"Error: CPU versus CUDA not the same: {y} vs. {y2}, diff = {y2-y}, max-diff = {(y2-y).abs().max()}")
68
69
                    assert(0)

70
            y_deriv = torch.randn_like(y)
Daniel Povey's avatar
Daniel Povey committed
71
72
73
74
75
            y.backward(gradient=y_deriv)

            delta = 1.0e-04
            delta_x = torch.randn_like(x) * delta
            pred_change = (x.grad * delta_x).sum()
76
77
            y2 = learned_nonlin(x + delta_x, params, dim = 1)
            observed_change = (y_deriv * (y2 - y)).sum()
Daniel Povey's avatar
Daniel Povey committed
78
            print(f"for input: pred_change = {pred_change}, observed_change={observed_change}")
79
            if not torch.allclose(pred_change, observed_change, rtol=2.0e-02, atol=1.0e-05):
80
81
                print(f"For changed input, output differs too much: params={params}, input={x}, mod_input={x+delta_x}, y={y}, y2={y2}, diff={y2-y}")
                assert 0
Daniel Povey's avatar
Daniel Povey committed
82
83
84
85
86
87

            delta_params = torch.randn_like(params) * delta
            pred_change = (params.grad * delta_params).sum()
            observed_change = (y_deriv * (learned_nonlin(x, params + delta_params, dim = 1) - y)).sum()
            print(f"for params: pred_change = {pred_change}, observed_change={observed_change}")
            assert torch.allclose(pred_change, observed_change, rtol=1.0e-02, atol=1.0e-05)
88
89
90
91



def test_learned_nonlin_zeros():
Daniel Povey's avatar
Daniel Povey committed
92
93
94
95
96
    N = 1
    C = 2
    H = 3
    W = 4
    for device in [ torch.device('cpu'), torch.device('cuda:0') ]:
Daniel Povey's avatar
Daniel Povey committed
97
98
99
        if device == torch.device('cuda:0') and not torch.cuda.is_available():
            print("Warning: torch not available, not testing this part.")
            continue
Daniel Povey's avatar
Daniel Povey committed
100
101
102
103
104
105
        for dtype in [torch.float32, torch.float64]:
            print("device=", device, ", dtype=", dtype)
            input = torch.zeros(N, 2 * C, H, W, device=device, dtype=dtype)
            kH = 5
            kW = 5
            pos_add = torch.zeros(C, kH, kW, device=device, dtype=dtype)
106
            pos_mul = torch.ones(C, kH, kW, device=device, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
107
108
109
            input.requires_grad = True
            pos_add.requires_grad = True
            pos_mul.requires_grad = True
Daniel Povey's avatar
Daniel Povey committed
110

Daniel Povey's avatar
Daniel Povey committed
111
            output_ref = torch.zeros(N, C, H, W, device=device, dtype=dtype)
112
            output = learned_nonlin(input, pos_add, pos_mul)
Daniel Povey's avatar
Daniel Povey committed
113
            assert torch.allclose(output, output_ref)
Daniel Povey's avatar
Daniel Povey committed
114

Daniel Povey's avatar
Daniel Povey committed
115
116
117
118
119
            output.sum().backward()
            print("input_grad=", input.grad)
            print("pos_add_grad=", pos_add.grad)
            print("pos_mul_grad=", pos_mul.grad)

Daniel Povey's avatar
Daniel Povey committed
120

121
def test_learned_nonlin_compare():
Daniel Povey's avatar
Daniel Povey committed
122
123
124
125
126
127
128
129
130
    N = 1
    C = 2
    H = 3
    W = 4
    if not torch.cuda.is_available():
        print("Warning: torch not available, not testing this part.")
        return
    for dtype in [torch.float32, torch.float64]:
        print("dtype=", dtype)
Daniel Povey's avatar
Daniel Povey committed
131
        input = torch.randn(N, 2 * C, H, W, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
132
        device = torch.device('cuda:0')
133
        input_cuda = input.to(device).detach()
Daniel Povey's avatar
Daniel Povey committed
134
135
136

        kH = 5
        kW = 5
Daniel Povey's avatar
Daniel Povey committed
137
138
139
        pos_add = torch.randn(C, kH, kW, dtype=dtype)
        pos_mul = torch.randn(C, kH, kW, dtype=dtype)

140
141
142
143
144
        pos_add_cuda = pos_add.to(device).detach()
        pos_mul_cuda = pos_mul.to(device).detach()

        for x in [ pos_add, pos_mul, pos_add_cuda, pos_mul_cuda, input, input_cuda ]:
            x.requires_grad = True
Daniel Povey's avatar
Daniel Povey committed
145

146
147
        output = learned_nonlin(input, pos_add, pos_mul)
        output_cuda = learned_nonlin(input_cuda, pos_add_cuda, pos_mul_cuda)
Daniel Povey's avatar
Daniel Povey committed
148
149
        print("output = ", output)
        print("output_cuda = ", output_cuda)
150
151
152
153
154

        output_grad = torch.randn(*output.shape, dtype=dtype)
        output.backward(gradient=output_grad)
        output_cuda.backward(gradient=output_grad.to(device))

Daniel Povey's avatar
Daniel Povey committed
155
156
157
158
159
        diff = (output - output_cuda.to(torch.device('cpu'))).abs().sum()
        abs = output.abs().sum()
        print("Diff = ", diff, ", abs = ", abs)
        assert torch.allclose(output, output_cuda.to(torch.device('cpu')),
                              atol=1.0e-05)
Daniel Povey's avatar
Daniel Povey committed
160
161


162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        for a,b,name in [ (pos_add, pos_add_cuda, 'pos_add'),
                          (pos_mul, pos_mul_cuda, 'pos_mul'),
                          (input, input_cuda, 'input') ]:
            grad = a.grad
            cuda_grad = b.grad.to(torch.device('cpu'))
            diff_abs = (grad - cuda_grad).abs().sum().item()
            sum_abs = (grad + cuda_grad).abs().sum().item()
            print(f"Comparing grad of {name}: diff={diff_abs}, sum={sum_abs}")
            if diff_abs > 1.0e-05 * sum_abs:
                print(f"Error: too much difference in grad of {name}.")
                print("grad = ", grad)
                print("cuda_grad = ", cuda_grad)



177
def test_learned_nonlin_rand_compare():
Daniel Povey's avatar
Daniel Povey committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    for _ in range(30):
        N = random.randint(1, 256)
        C = random.randint(1, 64)
        H = random.randint(1, 128)
        W = random.randint(1, 128)

        while N * C * H * W > 65535:
            if N >= C and N >= H and N >= W:
                N = N // 2
            elif C >= H and C >= W:
                C = C // 2
            elif H >= W:
                H = H // 2
            else:
                W = W // 2


        if not torch.cuda.is_available():
            print("Warning: torch not available, not testing this part.")
            return
        for dtype in [torch.float32, torch.float64]:
            print("dtype=", dtype)
Daniel Povey's avatar
Daniel Povey committed
200
            input = torch.randn(N, 2 * C, H, W, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
201
202
203
204
205
206
207
208
209
            device = torch.device('cuda:0')
            input_cuda = input.to(device)

            kH = random.randint(1, 10)
            kW = random.randint(1, 10)
            if kH % 2 == 0:
                kH += 1
            if kW % 2 == 0:
                kW += 1
Daniel Povey's avatar
Daniel Povey committed
210
211
            pos_add = torch.randn(C, kH, kW, dtype=dtype)
            pos_mul = torch.randn(C, kH, kW, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
212
213
214
            pos_add_cuda = pos_add.to(device)
            pos_mul_cuda = pos_mul.to(device)

215
216
            output = learned_nonlin(input, pos_add, pos_mul)
            output_cuda = learned_nonlin(input_cuda, pos_add_cuda, pos_mul_cuda)
Daniel Povey's avatar
Daniel Povey committed
217
218

            diff = (output - output_cuda.to(torch.device('cpu'))).abs().sum()
219
220
            sum_abs = output.abs().sum()
            print("Diff = ", diff, ", abs = ", sum_abs)
Daniel Povey's avatar
Daniel Povey committed
221

222
            if (diff / sum_abs).item() > 0.001:
Daniel Povey's avatar
Daniel Povey committed
223
224
225
                print("output = ", output)
                print("output_cuda = ", output_cuda)
                assert 0, "outputs differ"
226
227
228



229
def test_learned_nonlin_rand_grad():
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    for _ in range(30):
        N = random.randint(1, 256)
        C = random.randint(1, 64)
        H = random.randint(1, 128)
        W = random.randint(1, 128)

        while N * C * H * W > 65535:
            if N >= C and N >= H and N >= W:
                N = N // 2
            elif C >= H and C >= W:
                C = C // 2
            elif H >= W:
                H = H // 2
            else:
                W = W // 2

        for device in [ torch.device('cpu'), torch.device('cuda:0') ]:
            if device == torch.device('cuda:0') and not torch.cuda.is_available():
                print("Warning: torch not available, not testing this part.")
                continue
            for dtype in [torch.float32, torch.float64]:
                print("dtype=", dtype, ", device=", device)
                input = torch.randn(N, 2 * C, H, W, dtype=dtype, device=device)


                kH = random.randint(1, 10)
                kW = random.randint(1, 10)
                if kH % 2 == 0:
                    kH += 1
                if kW % 2 == 0:
                    kW += 1
                pos_add = torch.randn(C, kH, kW, dtype=dtype, device=device)
                pos_mul = torch.randn(C, kH, kW, dtype=dtype, device=device)
                input.requires_grad = True
                pos_add.requires_grad = True
                pos_mul.requires_grad = True

267
                output = learned_nonlin(input, pos_add, pos_mul)
268
269
270
271
272
273
274
                output_grad = torch.randn(N, C, H, W, dtype=dtype, device=device)

                output.backward(gradient=output_grad)

                delta = 1.0e-05
                pos_delta = delta * torch.randn(C, kH, kW, dtype=dtype, device=device)
                pred_change = (pos_delta * pos_add.grad).sum().to('cpu').item()
275
                change = (output_grad * (learned_nonlin(input, pos_add + pos_delta, pos_mul) - output )).sum().to('cpu').item()
276
277
278
279
                print(f"For pos_add: pred_change={pred_change}, change={change}")
                #assert abs(pred_change - change)  < 1.0e-04

                pred_change = (pos_delta * pos_mul.grad).sum().to('cpu').item()
280
                change = (output_grad * (learned_nonlin(input, pos_add, pos_mul + pos_delta) - output )).sum().to('cpu').item()
281
282
283
284
285
                print(f"For pos_mul: pred_change={pred_change}, change={change}")
                #assert abs(pred_change - change) / abs(change) < 1.0e-04

                input_delta = delta * torch.randn(N, 2*C, H, W, dtype=dtype, device=device)
                pred_change = (input_delta * input.grad).sum().to('cpu').item()
286
                change = (output_grad * (learned_nonlin(input + input_delta, pos_add, pos_mul) - output )).sum().to('cpu').item()
287
288
289
290
291
                print(f"For input: pred_change={pred_change}, change={change}")
                #assert abs(pred_change - change) / abs(change) < 1.0e-04


if __name__ == "__main__":
292
    test_learned_nonlin_basic()
Daniel Povey's avatar
Daniel Povey committed
293
    test_learned_nonlin_deriv()
294
295
296
297
298
    if False:
        test_learned_nonlin_rand_grad()
        test_learned_nonlin_zeros()
        test_learned_nonlin_compare()
        test_learned_nonlin_rand_compare()