learned_nonlin_test.py 8.03 KB
Newer Older
Daniel Povey's avatar
Daniel Povey committed
1
import random
Daniel Povey's avatar
Daniel Povey committed
2
3
4
5
6
7
8
9
10
11
import torch
from torch_integrated_conv import integrated_conv


def test_integrated_conv_zeros():
    N = 1
    C = 2
    H = 3
    W = 4
    for device in [ torch.device('cpu'), torch.device('cuda:0') ]:
Daniel Povey's avatar
Daniel Povey committed
12
13
14
        if device == torch.device('cuda:0') and not torch.cuda.is_available():
            print("Warning: torch not available, not testing this part.")
            continue
Daniel Povey's avatar
Daniel Povey committed
15
16
17
18
19
20
        for dtype in [torch.float32, torch.float64]:
            print("device=", device, ", dtype=", dtype)
            input = torch.zeros(N, 2 * C, H, W, device=device, dtype=dtype)
            kH = 5
            kW = 5
            pos_add = torch.zeros(C, kH, kW, device=device, dtype=dtype)
21
            pos_mul = torch.ones(C, kH, kW, device=device, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
22
23
24
            input.requires_grad = True
            pos_add.requires_grad = True
            pos_mul.requires_grad = True
Daniel Povey's avatar
Daniel Povey committed
25

Daniel Povey's avatar
Daniel Povey committed
26
            output_ref = torch.zeros(N, C, H, W, device=device, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
27
            output = integrated_conv(input, pos_add, pos_mul)
Daniel Povey's avatar
Daniel Povey committed
28
            assert torch.allclose(output, output_ref)
Daniel Povey's avatar
Daniel Povey committed
29

Daniel Povey's avatar
Daniel Povey committed
30
31
32
33
34
            output.sum().backward()
            print("input_grad=", input.grad)
            print("pos_add_grad=", pos_add.grad)
            print("pos_mul_grad=", pos_mul.grad)

Daniel Povey's avatar
Daniel Povey committed
35
36
37
38
39
40
41
42
43
44
45

def test_integrated_conv_compare():
    N = 1
    C = 2
    H = 3
    W = 4
    if not torch.cuda.is_available():
        print("Warning: torch not available, not testing this part.")
        return
    for dtype in [torch.float32, torch.float64]:
        print("dtype=", dtype)
Daniel Povey's avatar
Daniel Povey committed
46
        input = torch.randn(N, 2 * C, H, W, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
47
        device = torch.device('cuda:0')
48
        input_cuda = input.to(device).detach()
Daniel Povey's avatar
Daniel Povey committed
49
50
51

        kH = 5
        kW = 5
Daniel Povey's avatar
Daniel Povey committed
52
53
54
        pos_add = torch.randn(C, kH, kW, dtype=dtype)
        pos_mul = torch.randn(C, kH, kW, dtype=dtype)

55
56
57
58
59
        pos_add_cuda = pos_add.to(device).detach()
        pos_mul_cuda = pos_mul.to(device).detach()

        for x in [ pos_add, pos_mul, pos_add_cuda, pos_mul_cuda, input, input_cuda ]:
            x.requires_grad = True
Daniel Povey's avatar
Daniel Povey committed
60
61
62
63
64

        output = integrated_conv(input, pos_add, pos_mul)
        output_cuda = integrated_conv(input_cuda, pos_add_cuda, pos_mul_cuda)
        print("output = ", output)
        print("output_cuda = ", output_cuda)
65
66
67
68
69

        output_grad = torch.randn(*output.shape, dtype=dtype)
        output.backward(gradient=output_grad)
        output_cuda.backward(gradient=output_grad.to(device))

Daniel Povey's avatar
Daniel Povey committed
70
71
72
73
74
        diff = (output - output_cuda.to(torch.device('cpu'))).abs().sum()
        abs = output.abs().sum()
        print("Diff = ", diff, ", abs = ", abs)
        assert torch.allclose(output, output_cuda.to(torch.device('cpu')),
                              atol=1.0e-05)
Daniel Povey's avatar
Daniel Povey committed
75
76


77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        for a,b,name in [ (pos_add, pos_add_cuda, 'pos_add'),
                          (pos_mul, pos_mul_cuda, 'pos_mul'),
                          (input, input_cuda, 'input') ]:
            grad = a.grad
            cuda_grad = b.grad.to(torch.device('cpu'))
            diff_abs = (grad - cuda_grad).abs().sum().item()
            sum_abs = (grad + cuda_grad).abs().sum().item()
            print(f"Comparing grad of {name}: diff={diff_abs}, sum={sum_abs}")
            if diff_abs > 1.0e-05 * sum_abs:
                print(f"Error: too much difference in grad of {name}.")
                print("grad = ", grad)
                print("cuda_grad = ", cuda_grad)



Daniel Povey's avatar
Daniel Povey committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def test_integrated_conv_rand_compare():
    for _ in range(30):
        N = random.randint(1, 256)
        C = random.randint(1, 64)
        H = random.randint(1, 128)
        W = random.randint(1, 128)

        while N * C * H * W > 65535:
            if N >= C and N >= H and N >= W:
                N = N // 2
            elif C >= H and C >= W:
                C = C // 2
            elif H >= W:
                H = H // 2
            else:
                W = W // 2


        if not torch.cuda.is_available():
            print("Warning: torch not available, not testing this part.")
            return
        for dtype in [torch.float32, torch.float64]:
            print("dtype=", dtype)
Daniel Povey's avatar
Daniel Povey committed
115
            input = torch.randn(N, 2 * C, H, W, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
116
117
118
119
120
121
122
123
124
            device = torch.device('cuda:0')
            input_cuda = input.to(device)

            kH = random.randint(1, 10)
            kW = random.randint(1, 10)
            if kH % 2 == 0:
                kH += 1
            if kW % 2 == 0:
                kW += 1
Daniel Povey's avatar
Daniel Povey committed
125
126
            pos_add = torch.randn(C, kH, kW, dtype=dtype)
            pos_mul = torch.randn(C, kH, kW, dtype=dtype)
Daniel Povey's avatar
Daniel Povey committed
127
128
129
130
131
            pos_add_cuda = pos_add.to(device)
            pos_mul_cuda = pos_mul.to(device)

            output = integrated_conv(input, pos_add, pos_mul)
            output_cuda = integrated_conv(input_cuda, pos_add_cuda, pos_mul_cuda)
Daniel Povey's avatar
Daniel Povey committed
132
133

            diff = (output - output_cuda.to(torch.device('cpu'))).abs().sum()
134
135
            sum_abs = output.abs().sum()
            print("Diff = ", diff, ", abs = ", sum_abs)
Daniel Povey's avatar
Daniel Povey committed
136

137
            if (diff / sum_abs).item() > 0.001:
Daniel Povey's avatar
Daniel Povey committed
138
139
140
                print("output = ", output)
                print("output_cuda = ", output_cuda)
                assert 0, "outputs differ"
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210



def test_integrated_conv_rand_grad():
    for _ in range(30):
        N = random.randint(1, 256)
        C = random.randint(1, 64)
        H = random.randint(1, 128)
        W = random.randint(1, 128)

        while N * C * H * W > 65535:
            if N >= C and N >= H and N >= W:
                N = N // 2
            elif C >= H and C >= W:
                C = C // 2
            elif H >= W:
                H = H // 2
            else:
                W = W // 2

        for device in [ torch.device('cpu'), torch.device('cuda:0') ]:
            if device == torch.device('cuda:0') and not torch.cuda.is_available():
                print("Warning: torch not available, not testing this part.")
                continue
            for dtype in [torch.float32, torch.float64]:
                print("dtype=", dtype, ", device=", device)
                input = torch.randn(N, 2 * C, H, W, dtype=dtype, device=device)


                kH = random.randint(1, 10)
                kW = random.randint(1, 10)
                if kH % 2 == 0:
                    kH += 1
                if kW % 2 == 0:
                    kW += 1
                pos_add = torch.randn(C, kH, kW, dtype=dtype, device=device)
                pos_mul = torch.randn(C, kH, kW, dtype=dtype, device=device)
                input.requires_grad = True
                pos_add.requires_grad = True
                pos_mul.requires_grad = True

                output = integrated_conv(input, pos_add, pos_mul)
                output_grad = torch.randn(N, C, H, W, dtype=dtype, device=device)

                output.backward(gradient=output_grad)

                delta = 1.0e-05
                pos_delta = delta * torch.randn(C, kH, kW, dtype=dtype, device=device)
                pred_change = (pos_delta * pos_add.grad).sum().to('cpu').item()
                change = (output_grad * (integrated_conv(input, pos_add + pos_delta, pos_mul) - output )).sum().to('cpu').item()
                print(f"For pos_add: pred_change={pred_change}, change={change}")
                #assert abs(pred_change - change)  < 1.0e-04

                pred_change = (pos_delta * pos_mul.grad).sum().to('cpu').item()
                change = (output_grad * (integrated_conv(input, pos_add, pos_mul + pos_delta) - output )).sum().to('cpu').item()
                print(f"For pos_mul: pred_change={pred_change}, change={change}")
                #assert abs(pred_change - change) / abs(change) < 1.0e-04

                input_delta = delta * torch.randn(N, 2*C, H, W, dtype=dtype, device=device)
                pred_change = (input_delta * input.grad).sum().to('cpu').item()
                change = (output_grad * (integrated_conv(input + input_delta, pos_add, pos_mul) - output )).sum().to('cpu').item()
                print(f"For input: pred_change={pred_change}, change={change}")
                #assert abs(pred_change - change) / abs(change) < 1.0e-04


if __name__ == "__main__":
    test_integrated_conv_rand_grad()
    test_integrated_conv_zeros()
    test_integrated_conv_compare()
    test_integrated_conv_rand_compare()