test_product_quantizer.py 4.68 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

from __future__ import absolute_import, division, print_function

import numpy as np

import faiss
import unittest



class TestProductQuantizer(unittest.TestCase):

    def test_pq(self):
        d = 64
        n = 2000
        cs = 4
        np.random.seed(123)
        x = np.random.random(size=(n, d)).astype('float32')
        pq = faiss.ProductQuantizer(d, cs, 8)
        pq.train(x)
        codes = pq.compute_codes(x)
        x2 = pq.decode(codes)
        diff = ((x - x2)**2).sum()

        # print("diff=", diff)
        # diff= 4418.0562
        self.assertGreater(5000, diff)

        pq10 = faiss.ProductQuantizer(d, cs, 10)
        assert pq10.code_size == 5
        pq10.verbose = True
        pq10.cp.verbose = True
        pq10.train(x)
        codes = pq10.compute_codes(x)

        x10 = pq10.decode(codes)
        diff10 = ((x - x10)**2).sum()
        self.assertGreater(diff, diff10)

    def do_test_codec(self, nbit):
        pq = faiss.ProductQuantizer(16, 2, nbit)

        # simulate training
        rs = np.random.RandomState(123)
        centroids = rs.rand(2, 1 << nbit, 8).astype('float32')
        faiss.copy_array_to_vector(centroids.ravel(), pq.centroids)

        idx = rs.randint(1 << nbit, size=(100, 2))
        # can be encoded exactly
        x = np.hstack((
            centroids[0, idx[:, 0]],
            centroids[1, idx[:, 1]]
        ))

        # encode / decode
        codes = pq.compute_codes(x)
        xr = pq.decode(codes)
        assert np.all(xr == x)

        # encode w/ external index
        assign_index = faiss.IndexFlatL2(8)
        pq.assign_index = assign_index
        codes2 = np.empty((100, pq.code_size), dtype='uint8')
        pq.compute_codes_with_assign_index(
            faiss.swig_ptr(x), faiss.swig_ptr(codes2), 100)
        assert np.all(codes == codes2)

    def test_codec(self):
        for i in range(16):
            print("Testing nbits=%d" % (i + 1))
            self.do_test_codec(i + 1)


class TestPQTables(unittest.TestCase):

    def do_test(self, d, dsub, nbit=8, metric=None):
        if metric is None:
            self.do_test(d, dsub, nbit, faiss.METRIC_INNER_PRODUCT)
            self.do_test(d, dsub, nbit, faiss.METRIC_L2)
            return
        # faiss.cvar.distance_compute_blas_threshold = 1000000

        M = d // dsub
        pq = faiss.ProductQuantizer(d, M, nbit)
        xt = faiss.randn((max(1000, pq.ksub * 50), d), 123)
        pq.cp.niter = 4    # to avoid timeouts in tests
        pq.train(xt)

        centroids = faiss.vector_to_array(pq.centroids)
        centroids = centroids.reshape(pq.M, pq.ksub, pq.dsub)

        nx = 100
        x = faiss.randn((nx, d), 555)

        ref_tab = np.zeros((nx, M, pq.ksub), "float32")

        # computation of tables in numpy
        for sq in range(M):
            i0, i1 = sq * dsub, (sq + 1) * dsub
            xsub = x[:, i0:i1]
            centsq = centroids[sq, :, :]
            if metric == faiss.METRIC_INNER_PRODUCT:
                ref_tab[:, sq, :] = xsub @ centsq.T
            elif metric == faiss.METRIC_L2:
                xsub3 = xsub.reshape(nx, 1, dsub)
                cent3 = centsq.reshape(1, pq.ksub, dsub)
                ref_tab[:, sq, :] = ((xsub3 - cent3) ** 2).sum(2)
            else:
                assert False

        sp = faiss.swig_ptr

        new_tab = np.zeros((nx, M, pq.ksub), "float32")
        if metric == faiss.METRIC_INNER_PRODUCT:
            pq.compute_inner_prod_tables(nx, sp(x), sp(new_tab))
        elif metric == faiss.METRIC_L2:
            pq.compute_distance_tables(nx, sp(x), sp(new_tab))
        else:
            assert False

        # compute sdc tables in numpy
        cent1 = np.expand_dims(centroids, axis=2)  # [M, ksub, 1, dsub]
        cent2 = np.expand_dims(centroids, axis=1)  # [M, 1, ksub, dsub]
        ref_sdc_tab = ((cent1 - cent2) ** 2).sum(3)

        pq.compute_sdc_table()
        new_sdc_tab = faiss.vector_to_array(pq.sdc_table)
        new_sdc_tab = new_sdc_tab.reshape(M, pq.ksub, pq.ksub)

        np.testing.assert_array_almost_equal(ref_tab, new_tab, decimal=5)
        np.testing.assert_array_almost_equal(ref_sdc_tab, new_sdc_tab, decimal=5)

    def test_dsub2(self):
        self.do_test(16, 2)

    def test_dsub5(self):
        self.do_test(20, 5)

    def test_dsub2_odd(self):
        self.do_test(18, 2)

    def test_dsub4(self):
        self.do_test(32, 4)

    def test_dsub4_odd(self):
        self.do_test(36, 4)

    # too slow
    #def test_12bit(self):
    #    self.do_test(32, 4, nbit=12)

    def test_4bit(self):
        self.do_test(32, 4, nbit=4)