test_lsq.py 13.9 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

"""
Tests for the implementation of Local Search Quantizer
"""

import numpy as np

import faiss
import unittest

from faiss.contrib import datasets


sp = faiss.swig_ptr


def construct_sparse_matrix(codes, K):
    n, M = codes.shape
    B = np.zeros((n, M * K), dtype=np.float32)
    for i in range(n):
        for j in range(M):
            code = codes[i, j]
            B[i, j * K + code] = 1
    return B


def update_codebooks_ref(x, codes, K, lambd):
    n, d = x.shape
    M = codes.shape[1]

    B = construct_sparse_matrix(codes, K)
    reg = np.identity(M * K) * float(lambd)
    reg = reg.astype(np.float32)

    # C = (B'B + lambd * I)^(-1)B'X
    bb = np.linalg.inv(B.T @ B + reg)
    C = bb @ B.T @ x
    C = C.reshape(M, K, d)

    return C


def compute_binary_terms_ref(codebooks):
    M, K, d = codebooks.shape

    codebooks_t = np.swapaxes(codebooks, 1, 2)  # [M, d, K]
    binaries = 2 * codebooks.dot(codebooks_t)   # [M, K, M, K]
    binaries = np.swapaxes(binaries, 1, 2)      # [M, M, K, K]

    return binaries


def compute_unary_terms_ref(codebooks, x):
    codebooks_t = np.swapaxes(codebooks, 1, 2)  # [M, d, K]
    unaries = -2 * x.dot(codebooks_t)  # [n, M, K]
    code_norms = np.sum(codebooks * codebooks, axis=2)  # [M, K]
    unaries += code_norms
    unaries = np.swapaxes(unaries, 0, 1)  # [M, n, K]

    return unaries


def icm_encode_step_ref(unaries, binaries, codes):
    M, n, K = unaries.shape

    for m in range(M):
        objs = unaries[m].copy()  # [n, K]

        for m2 in range(M):  # pair, m2 != m
            if m2 == m:
                continue

            for i in range(n):
                for code in range(K):
                    code2 = codes[i, m2]
                    objs[i, code] += binaries[m, m2, code, code2]

        codes[:, m] = np.argmin(objs, axis=1)

    return codes


def decode_ref(x, codebooks, codes):
    n, d = x.shape
    _, M = codes.shape
    decoded_x = np.zeros((n, d), dtype=np.float32)
    for i in range(n):
        for m in range(M):
            decoded_x[i] += codebooks[m, codes[i, m]]

    return decoded_x


def icm_encode_ref(x, codebooks, codes):
    n, d = x.shape
    M, K, d = codebooks.shape

    codes = codes.copy()
    for m in range(M):
        objs = np.zeros((n, K), dtype=np.float32)  # [n, K]
        for code in range(K):
            new_codes = codes.copy()
            new_codes[:, m] = code

            # decode x
            decoded_x = decode_ref(x, codebooks, new_codes)
            objs[:, code] = np.sum((x - decoded_x) ** 2, axis=1)

        codes[:, m] = np.argmin(objs, axis=1)

    return codes


class TestComponents(unittest.TestCase):

    def test_decode(self):
        """Test LSQ decode"""
        d = 16
        n = 500
        M = 4
        nbits = 6
        K = (1 << nbits)

        rs = np.random.RandomState(123)
        x = rs.rand(n, d).astype(np.float32)
        codes = rs.randint(0, K, (n, M)).astype(np.int32)
        lsq = faiss.LocalSearchQuantizer(d, M, nbits)
        lsq.train(x)

        # decode x
        pack_codes = np.zeros((n, lsq.code_size)).astype(np.uint8)
        decoded_x = np.zeros((n, d)).astype(np.float32)
        lsq.pack_codes(n, sp(codes), sp(pack_codes))
        lsq.decode_c(sp(pack_codes), sp(decoded_x), n)

        # decode in Python
        codebooks = faiss.vector_float_to_array(lsq.codebooks)
        codebooks = codebooks.reshape(M, K, d).copy()
        decoded_x_ref = decode_ref(x, codebooks, codes)

        np.testing.assert_allclose(decoded_x, decoded_x_ref, rtol=1e-6)

    def test_update_codebooks(self):
        """Test codebooks updatation."""
        d = 16
        n = 500
        M = 4
        nbits = 6
        K = (1 << nbits)

        # set a larger value to make the updating process more stable
        lambd = 1e-2

        rs = np.random.RandomState(123)
        x = rs.rand(n, d).astype(np.float32)
        codes = rs.randint(0, K, (n, M)).astype(np.int32)

        lsq = faiss.LocalSearchQuantizer(d, M, nbits)
        lsq.lambd = lambd
        lsq.train(x)  # just for allocating memory for codebooks

        codebooks = faiss.vector_float_to_array(lsq.codebooks)
        codebooks = codebooks.reshape(M, K, d).copy()

        lsq.update_codebooks(sp(x), sp(codes), n)
        new_codebooks = faiss.vector_float_to_array(lsq.codebooks)
        new_codebooks = new_codebooks.reshape(M, K, d).copy()

        ref_codebooks = update_codebooks_ref(x, codes, K, lambd)

        np.testing.assert_allclose(new_codebooks, ref_codebooks, atol=1e-3)

    def test_update_codebooks_with_double(self):
        """If the data is not zero-centering, it would be more accurate to
        use double-precision floating-point numbers."""
        ds = datasets.SyntheticDataset(16, 1000, 1000, 0)

        xt = ds.get_train() + 1000
        xb = ds.get_database() + 1000

        M = 4
        nbits = 4

        lsq = faiss.LocalSearchQuantizer(ds.d, M, nbits)
        lsq.train(xt)
        err_double = eval_codec(lsq, xb)

        lsq = faiss.LocalSearchQuantizer(ds.d, M, nbits)
        lsq.update_codebooks_with_double = False
        lsq.train(xt)
        err_float = eval_codec(lsq, xb)

        # 6533.377 vs 25457.99
        print(err_double, err_float)
        self.assertLess(err_double, err_float)

    def test_compute_binary_terms(self):
        d = 16
        n = 500
        M = 4
        nbits = 6
        K = (1 << nbits)

        rs = np.random.RandomState(123)
        x = rs.rand(n, d).astype(np.float32)
        binaries = np.zeros((M, M, K, K)).astype(np.float32)

        lsq = faiss.LocalSearchQuantizer(d, M, nbits)
        lsq.train(x)  # just for allocating memory for codebooks

        lsq.compute_binary_terms(sp(binaries))

        codebooks = faiss.vector_float_to_array(lsq.codebooks)
        codebooks = codebooks.reshape(M, K, d).copy()
        ref_binaries = compute_binary_terms_ref(codebooks)

        np.testing.assert_allclose(binaries, ref_binaries, atol=1e-4)

    def test_compute_unary_terms(self):
        d = 16
        n = 500
        M = 4
        nbits = 6
        K = (1 << nbits)

        rs = np.random.RandomState(123)
        x = rs.rand(n, d).astype(np.float32)
        unaries = np.zeros((M, n, K)).astype(np.float32)

        lsq = faiss.LocalSearchQuantizer(d, M, nbits)
        lsq.train(x)  # just for allocating memory for codebooks

        lsq.compute_unary_terms(sp(x), sp(unaries), n)

        codebooks = faiss.vector_float_to_array(lsq.codebooks)
        codebooks = codebooks.reshape(M, K, d).copy()
        ref_unaries = compute_unary_terms_ref(codebooks, x)

        np.testing.assert_allclose(unaries, ref_unaries, atol=1e-4)

    def test_icm_encode_step(self):
        d = 16
        n = 500
        M = 4
        nbits = 6
        K = (1 << nbits)

        rs = np.random.RandomState(123)

        # randomly generate codes, binary terms and unary terms
        codes = rs.randint(0, K, (n, M)).astype(np.int32)
        new_codes = codes.copy()
        unaries = rs.rand(M, n, K).astype(np.float32)
        binaries = rs.rand(M, M, K, K).astype(np.float32)

        # do icm encoding given binary and unary terms
        lsq = faiss.LocalSearchQuantizer(d, M, nbits)
        lsq.icm_encode_step(
            sp(new_codes),
            sp(unaries),
            sp(binaries),
            n,
            1)

        # do icm encoding given binary and unary terms in Python
        ref_codes = icm_encode_step_ref(unaries, binaries, codes)
        np.testing.assert_array_equal(new_codes, ref_codes)

    def test_icm_encode(self):
        d = 16
        n = 500
        M = 4
        nbits = 4
        K = (1 << nbits)

        rs = np.random.RandomState(123)
        x = rs.rand(n, d).astype(np.float32)

        lsq = faiss.LocalSearchQuantizer(d, M, nbits)
        lsq.train(x)  # just for allocating memory for codebooks

        # compute binary terms
        binaries = np.zeros((M, M, K, K)).astype(np.float32)
        lsq.compute_binary_terms(sp(binaries))

        # compute unary terms
        unaries = np.zeros((M, n, K)).astype(np.float32)
        lsq.compute_unary_terms(sp(x), sp(unaries), n)

        # randomly generate codes
        codes = rs.randint(0, K, (n, M)).astype(np.int32)
        new_codes = codes.copy()

        # do icm encoding given binary and unary terms
        lsq.icm_encode_step(
            sp(new_codes),
            sp(unaries),
            sp(binaries),
            n,
            1)

        # do icm encoding without pre-computed unary and bianry terms in Python
        codebooks = faiss.vector_float_to_array(lsq.codebooks)
        codebooks = codebooks.reshape(M, K, d).copy()
        ref_codes = icm_encode_ref(x, codebooks, codes)

        np.testing.assert_array_equal(new_codes, ref_codes)


def eval_codec(q, xb):
    codes = q.compute_codes(xb)
    decoded = q.decode(codes)
    return ((xb - decoded) ** 2).sum()


class TestLocalSearchQuantizer(unittest.TestCase):

    def test_training(self):
        """check that the error is in the same ballpark as PQ."""
        ds = datasets.SyntheticDataset(32, 3000, 3000, 0)

        xt = ds.get_train()
        xb = ds.get_database()

        M = 4
        nbits = 4

        lsq = faiss.LocalSearchQuantizer(ds.d, M, nbits)
        lsq.train(xt)
        err_lsq = eval_codec(lsq, xb)

        pq = faiss.ProductQuantizer(ds.d, M, nbits)
        pq.train(xt)
        err_pq = eval_codec(pq, xb)

        print(err_lsq, err_pq)
        self.assertLess(err_lsq, err_pq)


class TestIndexLocalSearchQuantizer(unittest.TestCase):

    def test_IndexLocalSearchQuantizer(self):
        ds = datasets.SyntheticDataset(32, 1000, 200, 100)
        gt = ds.get_groundtruth(10)

        ir = faiss.IndexLocalSearchQuantizer(ds.d, 4, 5)
        ir.train(ds.get_train())
        ir.add(ds.get_database())
        Dref, Iref = ir.search(ds.get_queries(), 10)
        inter_ref = faiss.eval_intersection(Iref, gt)

        # 467
        self.assertGreater(inter_ref, 460)

        AQ = faiss.AdditiveQuantizer
        ir2 = faiss.IndexLocalSearchQuantizer(
            ds.d, 4, 5, faiss.METRIC_L2, AQ.ST_norm_float)

        ir2.train(ds.get_train())  # just to set flags properly
        ir2.lsq.codebooks = ir.lsq.codebooks

        ir2.add(ds.get_database())
        D2, I2 = ir2.search(ds.get_queries(), 10)
        np.testing.assert_array_almost_equal(Dref, D2, decimal=5)
        self.assertLess((Iref != I2).sum(), Iref.size * 0.01)

        # test I/O
        ir3 = faiss.deserialize_index(faiss.serialize_index(ir))
        D3, I3 = ir3.search(ds.get_queries(), 10)
        np.testing.assert_array_equal(Iref, I3)
        np.testing.assert_array_equal(Dref, D3)

    def test_coarse_quantizer(self):
        ds = datasets.SyntheticDataset(32, 5000, 1000, 100)
        gt = ds.get_groundtruth(10)

        quantizer = faiss.LocalSearchCoarseQuantizer(ds.d, 2, 4)
        quantizer.lsq.nperts
        quantizer.lsq.nperts = 2

        index = faiss.IndexIVFFlat(quantizer, ds.d, 256)
        index.quantizer_trains_alone = True

        index.train(ds.get_train())

        index.add(ds.get_database())
        index.nprobe = 4

        Dref, Iref = index.search(ds.get_queries(), 10)

        inter_ref = faiss.eval_intersection(Iref, gt)

        # 249
        self.assertGreater(inter_ref, 235)

    def test_factory(self):
        index = faiss.index_factory(20, "LSQ5x6_Nqint8")
        self.assertEqual(index.lsq.M, 5)
        self.assertEqual(index.lsq.K, 1 << 6)
        self.assertEqual(
            index.lsq.search_type,
            faiss.AdditiveQuantizer.ST_norm_qint8
        )

        index = faiss.index_factory(20, "LSQ5x6_Ncqint8")
        self.assertEqual(
            index.lsq.search_type,
            faiss.AdditiveQuantizer.ST_norm_cqint8
        )

        index = faiss.index_factory(20, "LSQ5x6_Ncqint4")
        self.assertEqual(
            index.lsq.search_type,
            faiss.AdditiveQuantizer.ST_norm_cqint4
        )



class TestIndexIVFLocalSearchQuantizer(unittest.TestCase):

    def test_factory(self):
        index = faiss.index_factory(20, "IVF1024,LSQ5x6_Nqint8")
        self.assertEqual(index.nlist, 1024)
        self.assertEqual(index.lsq.M, 5)
        self.assertEqual(index.lsq.K, 1 << 6)
        self.assertEqual(
            index.lsq.search_type,
            faiss.AdditiveQuantizer.ST_norm_qint8
        )

        index = faiss.index_factory(20, "IVF1024,LSQ5x6_Ncqint8")
        self.assertEqual(
            index.lsq.search_type,
            faiss.AdditiveQuantizer.ST_norm_cqint8
        )

    def eval_index_accuracy(self, factory_key):
        # just do a single test, most search functions are already stress
        # tested in test_residual_quantizer.py
        ds = datasets.SyntheticDataset(32, 3000, 1000, 100)
        index = faiss.index_factory(ds.d, factory_key)

        index.train(ds.get_train())
        index.add(ds.get_database())

        inters = []
        for nprobe in 1, 2, 5, 10, 20, 50:
            index.nprobe = nprobe
            D, I = index.search(ds.get_queries(), 10)
            inter = faiss.eval_intersection(I, ds.get_groundtruth(10))
            # print("nprobe=", nprobe, "inter=", inter)
            inters.append(inter)

        inters = np.array(inters)
        # in fact the results should be the same for the decoding and the
        # reconstructing versions
        self.assertTrue(np.all(inters[1:] >= inters[:-1]))

        # do a little I/O test
        index2 = faiss.deserialize_index(faiss.serialize_index(index))
        D2, I2 = index2.search(ds.get_queries(), 10)
        np.testing.assert_array_equal(I2, I)
        np.testing.assert_array_equal(D2, D)

    def test_index_accuracy_reconstruct(self):
        self.eval_index_accuracy("IVF100,LSQ4x5")

    def test_index_accuracy_reconstruct_LUT(self):
        self.eval_index_accuracy("IVF100,LSQ4x5_Nfloat")

    def test_index_accuracy_cqint(self):
        self.eval_index_accuracy("IVF100,LSQ4x5_Ncqint8")