test_contrib.py 13.1 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import faiss
import unittest
import numpy as np
import platform

from faiss.contrib import datasets
from faiss.contrib import inspect_tools
from faiss.contrib import evaluation
from faiss.contrib import ivf_tools

from common_faiss_tests import get_dataset_2
try:
    from faiss.contrib.exhaustive_search import \
        knn_ground_truth, knn, range_ground_truth, \
        range_search_max_results, exponential_query_iterator

except:
    pass  # Submodule import broken in python 2.



@unittest.skipIf(platform.python_version_tuple()[0] < '3', \
                 'Submodule import broken in python 2.')
class TestComputeGT(unittest.TestCase):

    def test_compute_GT(self):
        d = 64
        xt, xb, xq = get_dataset_2(d, 0, 10000, 100)

        index = faiss.IndexFlatL2(d)
        index.add(xb)
        Dref, Iref = index.search(xq, 10)

        # iterator function on the matrix

        def matrix_iterator(xb, bs):
            for i0 in range(0, xb.shape[0], bs):
                yield xb[i0:i0 + bs]

        Dnew, Inew = knn_ground_truth(xq, matrix_iterator(xb, 1000), 10)

        np.testing.assert_array_equal(Iref, Inew)
        # decimal = 4 required when run on GPU
        np.testing.assert_almost_equal(Dref, Dnew, decimal=4)


class TestDatasets(unittest.TestCase):
    """here we test only the synthetic dataset. Datasets that require
    disk or manifold access are in
    //deeplearning/projects/faiss-forge/test_faiss_datasets/:test_faiss_datasets
    """

    def test_synthetic(self):
        ds = datasets.SyntheticDataset(32, 1000, 2000, 10)
        xq = ds.get_queries()
        self.assertEqual(xq.shape, (10, 32))
        xb = ds.get_database()
        self.assertEqual(xb.shape, (2000, 32))
        ds.check_sizes()

    def test_synthetic_ip(self):
        ds = datasets.SyntheticDataset(32, 1000, 2000, 10, "IP")
        index = faiss.IndexFlatIP(32)
        index.add(ds.get_database())
        np.testing.assert_array_equal(
            ds.get_groundtruth(100),
            index.search(ds.get_queries(), 100)[1]
        )


    def test_synthetic_iterator(self):
        ds = datasets.SyntheticDataset(32, 1000, 2000, 10)
        xb = ds.get_database()
        xb2 = []
        for xbi in ds.database_iterator():
            xb2.append(xbi)
        xb2 = np.vstack(xb2)
        np.testing.assert_array_equal(xb, xb2)


class TestExhaustiveSearch(unittest.TestCase):

    def test_knn_cpu(self):
        xb = np.random.rand(200, 32).astype('float32')
        xq = np.random.rand(100, 32).astype('float32')

        index = faiss.IndexFlatL2(32)
        index.add(xb)
        Dref, Iref = index.search(xq, 10)

        Dnew, Inew = knn(xq, xb, 10)

        assert np.all(Inew == Iref)
        assert np.allclose(Dref, Dnew)


        index = faiss.IndexFlatIP(32)
        index.add(xb)
        Dref, Iref = index.search(xq, 10)

        Dnew, Inew = knn(xq, xb, 10, metric=faiss.METRIC_INNER_PRODUCT)

        assert np.all(Inew == Iref)
        assert np.allclose(Dref, Dnew)

    def do_test_range(self, metric):
        ds = datasets.SyntheticDataset(32, 0, 1000, 10)
        xq = ds.get_queries()
        xb = ds.get_database()
        D, I = faiss.knn(xq, xb, 10, metric=metric)
        threshold = float(D[:, -1].mean())

        index = faiss.IndexFlat(32, metric)
        index.add(xb)
        ref_lims, ref_D, ref_I = index.range_search(xq, threshold)

        new_lims, new_D, new_I = range_ground_truth(
            xq, ds.database_iterator(bs=100), threshold, ngpu=0,
            metric_type=metric)

        evaluation.test_ref_range_results(
            ref_lims, ref_D, ref_I,
            new_lims, new_D, new_I
        )

    def test_range_L2(self):
        self.do_test_range(faiss.METRIC_L2)

    def test_range_IP(self):
        self.do_test_range(faiss.METRIC_INNER_PRODUCT)

    def test_query_iterator(self, metric=faiss.METRIC_L2):
        ds = datasets.SyntheticDataset(32, 0, 1000, 1000)
        xq = ds.get_queries()
        xb = ds.get_database()
        D, I = faiss.knn(xq, xb, 10, metric=metric)
        threshold = float(D[:, -1].mean())
        print(threshold)

        index = faiss.IndexFlat(32, metric)
        index.add(xb)
        ref_lims, ref_D, ref_I = index.range_search(xq, threshold)

        def matrix_iterator(xb, bs):
            for i0 in range(0, xb.shape[0], bs):
                yield xb[i0:i0 + bs]

        # check repro OK
        _, new_lims, new_D, new_I = range_search_max_results(
            index, matrix_iterator(xq, 100), threshold, max_results=1e10)

        evaluation.test_ref_range_results(
            ref_lims, ref_D, ref_I,
            new_lims, new_D, new_I
        )

        max_res = ref_lims[-1] // 2

        new_threshold, new_lims, new_D, new_I = range_search_max_results(
            index, matrix_iterator(xq, 100), threshold, max_results=max_res)

        self.assertLessEqual(new_lims[-1], max_res)

        ref_lims, ref_D, ref_I = index.range_search(xq, new_threshold)

        evaluation.test_ref_range_results(
            ref_lims, ref_D, ref_I,
            new_lims, new_D, new_I
        )


class TestInspect(unittest.TestCase):

    def test_LinearTransform(self):
        # training data
        xt = np.random.rand(1000, 20).astype('float32')
        # test data
        x = np.random.rand(10, 20).astype('float32')
        # make the PCA matrix
        pca = faiss.PCAMatrix(20, 10)
        pca.train(xt)
        # apply it to test data
        yref = pca.apply_py(x)

        A, b = inspect_tools.get_LinearTransform_matrix(pca)

        # verify
        ynew = x @ A.T + b
        np.testing.assert_array_almost_equal(yref, ynew)

    def test_IndexFlat(self):
        xb = np.random.rand(13, 20).astype('float32')
        index = faiss.IndexFlatL2(20)
        index.add(xb)
        np.testing.assert_array_equal(
            xb, inspect_tools.get_flat_data(index)
        )


class TestRangeEval(unittest.TestCase):

    def test_precision_recall(self):
        Iref = [
            [1, 2, 3],
            [5, 6],
            [],
            []
        ]
        Inew = [
            [1, 2],
            [6, 7],
            [1],
            []
        ]

        lims_ref = np.cumsum([0] + [len(x) for x in Iref])
        Iref = np.hstack(Iref)
        lims_new = np.cumsum([0] + [len(x) for x in Inew])
        Inew = np.hstack(Inew)

        precision, recall = evaluation.range_PR(lims_ref, Iref, lims_new, Inew)
        print(precision, recall)

        self.assertEqual(precision, 0.6)
        self.assertEqual(recall, 0.6)

    def test_PR_multiple(self):
        metric = faiss.METRIC_L2
        ds = datasets.SyntheticDataset(32, 1000, 1000, 10)
        xq = ds.get_queries()
        xb = ds.get_database()

        # good for ~10k results
        threshold = 15

        index = faiss.IndexFlat(32, metric)
        index.add(xb)
        ref_lims, ref_D, ref_I = index.range_search(xq, threshold)

        # now make a slightly suboptimal index
        index2 = faiss.index_factory(32, "PCA16,Flat")
        index2.train(ds.get_train())
        index2.add(xb)

        # PCA reduces distances so will have more results
        new_lims, new_D, new_I = index2.range_search(xq, threshold)

        all_thr = np.array([5.0, 10.0, 12.0, 15.0])
        for mode in "overall", "average":
            ref_precisions = np.zeros_like(all_thr)
            ref_recalls = np.zeros_like(all_thr)

            for i, thr in enumerate(all_thr):

                lims2, _, I2 = evaluation.filter_range_results(
                    new_lims, new_D, new_I, thr)

                prec, recall = evaluation.range_PR(
                    ref_lims, ref_I, lims2, I2, mode=mode)

                ref_precisions[i] = prec
                ref_recalls[i] = recall

            precisions, recalls = evaluation.range_PR_multiple_thresholds(
                ref_lims, ref_I,
                new_lims, new_D, new_I, all_thr,
                mode=mode
            )

            np.testing.assert_array_almost_equal(ref_precisions, precisions)
            np.testing.assert_array_almost_equal(ref_recalls, recalls)


class TestPreassigned(unittest.TestCase):

    def test_float(self):
        ds = datasets.SyntheticDataset(128, 2000, 2000, 200)

        d = ds.d
        xt = ds.get_train()
        xq = ds.get_queries()
        xb = ds.get_database()

        # define alternative quantizer on the 20 first dims of vectors
        km = faiss.Kmeans(20, 50)
        km.train(xt[:, :20].copy())
        alt_quantizer = km.index

        index = faiss.index_factory(d, "IVF50,PQ16np")
        index.by_residual = False

        # (optional) fake coarse quantizer
        fake_centroids = np.zeros((index.nlist, index.d), dtype="float32")
        index.quantizer.add(fake_centroids)

        # train the PQ part
        index.train(xt)

        # add elements xb
        a = alt_quantizer.search(xb[:, :20].copy(), 1)[1].ravel()
        ivf_tools.add_preassigned(index, xb, a)

        # search elements xq, increase nprobe, check 4 first results w/ groundtruth
        prev_inter_perf = 0
        for nprobe in 1, 10, 20:

            index.nprobe = nprobe
            a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
            D, I = ivf_tools.search_preassigned(index, xq, 4, a)
            inter_perf = (I == ds.get_groundtruth()[:, :4]).sum() / I.size
            self.assertTrue(inter_perf >= prev_inter_perf)
            prev_inter_perf = inter_perf

        # test range search

        index.nprobe = 20

        a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]

        # just to find a reasonable radius
        D, I = ivf_tools.search_preassigned(index, xq, 4, a)
        radius = D.max() * 1.01

        lims, DR, IR = ivf_tools.range_search_preassigned(index, xq, radius, a)

        # with that radius the k-NN results are a subset of the range search results
        for q in range(len(xq)):
            l0, l1 = lims[q], lims[q + 1]
            self.assertTrue(set(I[q]) <= set(IR[l0:l1]))

    def test_binary(self):
        ds = datasets.SyntheticDataset(128, 2000, 2000, 200)

        d = ds.d
        xt = ds.get_train()
        xq = ds.get_queries()
        xb = ds.get_database()

        # define alternative quantizer on the 20 first dims of vectors (will be in float)
        km = faiss.Kmeans(20, 50)
        km.train(xt[:, :20].copy())
        alt_quantizer = km.index

        binarizer = faiss.index_factory(d, "ITQ,LSHt")
        binarizer.train(xt)

        xb_bin = binarizer.sa_encode(xb)
        xq_bin = binarizer.sa_encode(xq)

        index = faiss.index_binary_factory(d, "BIVF200")

        fake_centroids = np.zeros((index.nlist, index.d // 8), dtype="uint8")
        index.quantizer.add(fake_centroids)
        index.is_trained = True

        # add elements xb
        a = alt_quantizer.search(xb[:, :20].copy(), 1)[1].ravel()
        ivf_tools.add_preassigned(index, xb_bin, a)

        # search elements xq, increase nprobe, check 4 first results w/ groundtruth
        prev_inter_perf = 0
        for nprobe in 1, 10, 20:

            index.nprobe = nprobe
            a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]
            D, I = ivf_tools.search_preassigned(index, xq_bin, 4, a)
            inter_perf = (I == ds.get_groundtruth()[:, :4]).sum() / I.size
            self.assertTrue(inter_perf >= prev_inter_perf)
            prev_inter_perf = inter_perf

        # test range search

        index.nprobe = 20

        a = alt_quantizer.search(xq[:, :20].copy(), index.nprobe)[1]

        # just to find a reasonable radius
        D, I = ivf_tools.search_preassigned(index, xq_bin, 4, a)
        radius = int(D.max() + 1)

        lims, DR, IR = ivf_tools.range_search_preassigned(index, xq_bin, radius, a)

        # with that radius the k-NN results are a subset of the range search results
        for q in range(len(xq)):
            l0, l1 = lims[q], lims[q + 1]
            self.assertTrue(set(I[q]) <= set(IR[l0:l1]))


class TestRangeSearchMaxResults(unittest.TestCase):

    def do_test(self, metric_type):
        ds = datasets.SyntheticDataset(32, 0, 1000, 200)
        index = faiss.IndexFlat(ds.d, metric_type)
        index.add(ds.get_database())

        # find a reasonable radius
        D, _ = index.search(ds.get_queries(), 10)
        radius0 = float(np.median(D[:, -1]))

        # baseline = search with that radius
        lims_ref, Dref, Iref = index.range_search(ds.get_queries(), radius0)

        # now see if using just the total number of results, we can get back the same
        # result table
        query_iterator = exponential_query_iterator(ds.get_queries())

        init_radius = 1e10 if metric_type == faiss.METRIC_L2 else -1e10
        radius1, lims_new, Dnew, Inew = range_search_max_results(
            index, query_iterator, init_radius, min_results=Dref.size, clip_to_min=True
        )

        evaluation.test_ref_range_results(
            lims_ref, Dref, Iref,
            lims_new, Dnew, Inew
        )

    def test_L2(self):
        self.do_test(faiss.METRIC_L2)

    def test_IP(self):
        self.do_test(faiss.METRIC_INNER_PRODUCT)