bench_polysemous_1bn.py 6.89 KB
Newer Older
huchen's avatar
huchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import sys
import time
import numpy as np
import re
import faiss
from multiprocessing.dummy import Pool as ThreadPool
from datasets import ivecs_read


# we mem-map the biggest files to avoid having them in memory all at
# once


def mmap_fvecs(fname):
    x = np.memmap(fname, dtype='int32', mode='r')
    d = x[0]
    return x.view('float32').reshape(-1, d + 1)[:, 1:]


def mmap_bvecs(fname):
    x = np.memmap(fname, dtype='uint8', mode='r')
    d = x[:4].view('int32')[0]
    return x.reshape(-1, d + 4)[:, 4:]


#################################################################
# Bookkeeping
#################################################################


dbname        = sys.argv[1]
index_key     = sys.argv[2]
parametersets = sys.argv[3:]


tmpdir = '/tmp/bench_polysemous'

if not os.path.isdir(tmpdir):
    print("%s does not exist, creating it" % tmpdir)
    os.mkdir(tmpdir)


#################################################################
# Prepare dataset
#################################################################


print("Preparing dataset", dbname)

if dbname.startswith('SIFT'):
    # SIFT1M to SIFT1000M
    dbsize = int(dbname[4:-1])
    xb = mmap_bvecs('bigann/bigann_base.bvecs')
    xq = mmap_bvecs('bigann/bigann_query.bvecs')
    xt = mmap_bvecs('bigann/bigann_learn.bvecs')

    # trim xb to correct size
    xb = xb[:dbsize * 1000 * 1000]

    gt = ivecs_read('bigann/gnd/idx_%dM.ivecs' % dbsize)

elif dbname == 'Deep1B':
    xb = mmap_fvecs('deep1b/base.fvecs')
    xq = mmap_fvecs('deep1b/deep1B_queries.fvecs')
    xt = mmap_fvecs('deep1b/learn.fvecs')
    # deep1B's train is is outrageously big
    xt = xt[:10 * 1000 * 1000]
    gt = ivecs_read('deep1b/deep1B_groundtruth.ivecs')

else:
    print('unknown dataset', dbname, file=sys.stderr)
    sys.exit(1)


print("sizes: B %s Q %s T %s gt %s" % (
    xb.shape, xq.shape, xt.shape, gt.shape))

nq, d = xq.shape
nb, d = xb.shape
assert gt.shape[0] == nq


#################################################################
# Training
#################################################################


def choose_train_size(index_key):

    # some training vectors for PQ and the PCA
    n_train = 256 * 1000

    if "IVF" in index_key:
        matches = re.findall('IVF([0-9]+)', index_key)
        ncentroids = int(matches[0])
        n_train = max(n_train, 100 * ncentroids)
    elif "IMI" in index_key:
        matches = re.findall('IMI2x([0-9]+)', index_key)
        nbit = int(matches[0])
        n_train = max(n_train, 256 * (1 << nbit))
    return n_train


def get_trained_index():
    filename = "%s/%s_%s_trained.index" % (
        tmpdir, dbname, index_key)

    if not os.path.exists(filename):
        index = faiss.index_factory(d, index_key)

        n_train = choose_train_size(index_key)

        xtsub = xt[:n_train]
        print("Keeping %d train vectors" % xtsub.shape[0])
        # make sure the data is actually in RAM and in float
        xtsub = xtsub.astype('float32').copy()
        index.verbose = True

        t0 = time.time()
        index.train(xtsub)
        index.verbose = False
        print("train done in %.3f s" % (time.time() - t0))
        print("storing", filename)
        faiss.write_index(index, filename)
    else:
        print("loading", filename)
        index = faiss.read_index(filename)
    return index


#################################################################
# Adding vectors to dataset
#################################################################

def rate_limited_imap(f, l):
    'a thread pre-processes the next element'
    pool = ThreadPool(1)
    res = None
    for i in l:
        res_next = pool.apply_async(f, (i, ))
        if res:
            yield res.get()
        res = res_next
    yield res.get()


def matrix_slice_iterator(x, bs):
    " iterate over the lines of x in blocks of size bs"
    nb = x.shape[0]
    block_ranges = [(i0, min(nb, i0 + bs))
                    for i0 in range(0, nb, bs)]

    return rate_limited_imap(
        lambda i01: x[i01[0]:i01[1]].astype('float32').copy(),
        block_ranges)


def get_populated_index():

    filename = "%s/%s_%s_populated.index" % (
        tmpdir, dbname, index_key)

    if not os.path.exists(filename):
        index = get_trained_index()
        i0 = 0
        t0 = time.time()
        for xs in matrix_slice_iterator(xb, 100000):
            i1 = i0 + xs.shape[0]
            print('\radd %d:%d, %.3f s' % (i0, i1, time.time() - t0), end=' ')
            sys.stdout.flush()
            index.add(xs)
            i0 = i1
        print()
        print("Add done in %.3f s" % (time.time() - t0))
        print("storing", filename)
        faiss.write_index(index, filename)
    else:
        print("loading", filename)
        index = faiss.read_index(filename)
    return index


#################################################################
# Perform searches
#################################################################

index = get_populated_index()

ps = faiss.ParameterSpace()
ps.initialize(index)

# make sure queries are in RAM
xq = xq.astype('float32').copy()

# a static C++ object that collects statistics about searches
ivfpq_stats = faiss.cvar.indexIVFPQ_stats
ivf_stats = faiss.cvar.indexIVF_stats


if parametersets == ['autotune'] or parametersets == ['autotuneMT']:

    if parametersets == ['autotune']:
        faiss.omp_set_num_threads(1)

    # setup the Criterion object: optimize for 1-R@1
    crit = faiss.OneRecallAtRCriterion(nq, 1)
    # by default, the criterion will request only 1 NN
    crit.nnn = 100
    crit.set_groundtruth(None, gt.astype('int64'))

    # then we let Faiss find the optimal parameters by itself
    print("exploring operating points")

    t0 = time.time()
    op = ps.explore(index, xq, crit)
    print("Done in %.3f s, available OPs:" % (time.time() - t0))

    # opv is a C++ vector, so it cannot be accessed like a Python array
    opv = op.optimal_pts
    print("%-40s  1-R@1     time" % "Parameters")
    for i in range(opv.size()):
        opt = opv.at(i)
        print("%-40s  %.4f  %7.3f" % (opt.key, opt.perf, opt.t))

else:

    # we do queries in a single thread
    faiss.omp_set_num_threads(1)

    print(' ' * len(parametersets[0]), '\t', 'R@1    R@10   R@100     time    %pass')

    for param in parametersets:
        print(param, '\t', end=' ')
        sys.stdout.flush()
        ps.set_index_parameters(index, param)
        t0 = time.time()
        ivfpq_stats.reset()
        ivf_stats.reset()
        D, I = index.search(xq, 100)
        t1 = time.time()
        for rank in 1, 10, 100:
            n_ok = (I[:, :rank] == gt[:, :1]).sum()
            print("%.4f" % (n_ok / float(nq)), end=' ')
        print("%8.3f  " % ((t1 - t0) * 1000.0 / nq), end=' ')
        print("%5.2f" % (ivfpq_stats.n_hamming_pass * 100.0 / ivf_stats.ndis))