1. 14 Aug, 2019 1 commit
    • Myle Ott's avatar
      v0.7.2 -> v0.8.0 (#1017) · ffffe04e
      Myle Ott authored
      Summary:
      Changelog:
      - Relicensed under MIT license
      - Add RoBERTa
      - Add wav2vec
      - Add WMT'19 models
      - Add initial ASR code
      - Changed torch.hub interface (`generate` renamed to `translate`)
      - Add `--tokenizer` and `--bpe`
      - f812e529: Renamed data.transforms -> data.encoders
      - 654affc0: New Dataset API (optional)
      - `47fd9852`: Deprecate old Masked LM components
      - `5f78106a`: Set mmap as default dataset format and infer format automatically
      - Misc fixes for sampling
      - Misc fixes to support PyTorch 1.2
      Pull Request resolved: https://github.com/pytorch/fairseq/pull/1017
      
      Differential Revision: D16799880
      
      Pulled By: myleott
      
      fbshipit-source-id: 45ad8bc531724a53063cbc24ca1c93f715cdc5a7
      ffffe04e
  2. 19 Jul, 2019 1 commit
    • Myle Ott's avatar
      v0.7.1 -> v0.7.2 (#891) · b002d009
      Myle Ott authored
      Summary:
      No major API changes since the last release. Cutting a new release since we'll be merging significant (possibly breaking) changes to logging, data loading and the masked LM implementation soon.
      Pull Request resolved: https://github.com/pytorch/fairseq/pull/891
      
      Differential Revision: D16377132
      
      Pulled By: myleott
      
      fbshipit-source-id: f1cb88e671ccd510e53334d0f449fe18585268c7
      b002d009
  3. 20 Jun, 2019 2 commits
    • Myle Ott's avatar
      v0.7.1: fix PyPI setup and tests · 881381cf
      Myle Ott authored
      Summary: Pull Request resolved: https://github.com/pytorch/fairseq/pull/818
      
      Differential Revision: D15916265
      
      Pulled By: myleott
      
      fbshipit-source-id: c66c0bd988d3472c4150226952f34ee8d4c3db86
      881381cf
    • Myle Ott's avatar
      v0.7.0 (#817) · bd710e75
      Myle Ott authored
      Summary:
      Notable (possibly breaking) changes:
      - d45db804: Remove checkpoint utility functions from utils.py into checkpoint_utils.py
      - f2563c21: Move LM definitions into separate files
      - dffb1674: Updates to model API:
        - `FairseqModel` -> `FairseqEncoderDecoderModel`
        - add `FairseqDecoder.extract_features` and `FairseqDecoder.output_layer`
        - `encoder_out_dict` -> `encoder_out`
        - rm unused `remove_head` functions
      - 34726d56: Move `distributed_init` into `DistributedFairseqModel`
      - cf17068a: Simplify distributed launch by automatically launching multiprocessing on each node for all visible GPUs (allows launching just one job per node instead of one per GPU)
      - d45db804: Change default LR scheduler from `reduce_lr_on_plateau` to `fixed`
      - 96ac28d3: Rename `--sampling-temperature` -> `--temperature`
      - fc1a19a3: Deprecate dummy batches
      - a1c997bd: Add memory mapped datasets
      - 0add50c2: Allow cycling over multiple datasets, where each one becomes an "epoch"
      
      Plus many additional features and bugfixes
      Pull Request resolved: https://github.com/pytorch/fairseq/pull/817
      
      Differential Revision: D15913844
      
      Pulled By: myleott
      
      fbshipit-source-id: d5b5d678efdd9dd3e4d7ca848ddcf1ec2b21bf6b
      bd710e75
  4. 15 Mar, 2019 1 commit
    • Myle Ott's avatar
      0.6.1 -> 0.6.2 (#577) · e6422528
      Myle Ott authored
      Summary:
      Changelog:
      - 998ba4f: Add language models from Baevski & Auli (2018)
      - 4294c4f6: Add mixture of experts code from Shen et al. (2019)
      - 00493490: Add example for multilingual training
      - 48d9afbe: Speed improvements, including fused operators from apex
      - 44d27e64: Add Tensorboard support
      - d17fa851: Add Adadelta optimizer
      - 9e1c880f: Add `FairseqEncoderModel`
      - b65c579b: Add `FairseqTask.inference_step` to modularize generate.py
      - 2ad1178e: Add back `--curriculum`
      - Misc bug fixes and other features
      
      Pull Request resolved: https://github.com/pytorch/fairseq/pull/577
      
      Differential Revision: D14481233
      
      Pulled By: myleott
      
      fbshipit-source-id: 4ff8625ef1c0b24273fc65df7c5658e3c932e8b7
      e6422528
  5. 09 Feb, 2019 1 commit
    • Myle Ott's avatar
      Add fairseq to PyPI (#495) · fbd4cef9
      Myle Ott authored
      Summary:
      - fairseq can now be installed via pip: `pip install fairseq`
      - command-line tools are globally accessible: `fairseq-preprocess`, `fairseq-train`, `fairseq-generate`, etc.
      Pull Request resolved: https://github.com/pytorch/fairseq/pull/495
      
      Differential Revision: D14017761
      
      Pulled By: myleott
      
      fbshipit-source-id: 10c9f6634a3056074eac2f33324b4f1f404d4235
      fbd4cef9
  6. 25 Sep, 2018 1 commit
    • Sergey Edunov's avatar
      Switch to DistributedDataParallelC10d and bump version 0.5.0 -> 0.6.0 · 1082ba35
      Sergey Edunov authored
      - no more FP16Trainer, we just have an FP16Optimizer wrapper
      - most of the distributed code is moved to a new wrapper class called DistributedFairseqModel, which behaves like DistributedDataParallel and a FairseqModel at the same time
      - Trainer now requires an extra dummy_batch argument at initialization, which we do fwd/bwd on when there's an uneven number of batches per worker. We hide the gradients from these dummy batches by multiplying the loss by 0
      - Trainer.train_step now takes a list of samples, which will allow cleaner --update-freq
      1082ba35
  7. 04 Sep, 2018 1 commit
  8. 03 Sep, 2018 1 commit