1. 25 Jul, 2018 2 commits
    • Alexei Baevski's avatar
      Transformer lm · d2e2a1d4
      Alexei Baevski authored
      This implements transformer based language model. It already obtains better perplexity on wikitext103 without any tuning. I will also train it on gbw where I also expect to get better ppl
      
      Example training command:
      
      python train.py /private/home/abaevski/data/wiki103 —save-dir /tmp —fp16 —max-epoch 80 —save-interval 1 —arch transformer_lm —task language_modeling —optimizer nag —lr 0.008 —lr-scheduler reduce_lr_on_plateau —lr-shrink 0.6 —dropout 0.2 —criterion adaptive_loss —adaptive-softmax-cutoff 10000,50000,200000 —max-tokens 512 —tokens-per-sample 512 —seed 1 —sample-break-mode none —log-format json —log-interval 50 —save-interval-updates 2500 —keep-interval-updates 25
      small transformer got to 31.3 ppl on wiki text 103 (compared to 35 with fconv) while @myleott got a big transformer lm to 27 something ppl on wiki text 103
      d2e2a1d4
    • alexeib's avatar
      make model access saner · 0e9e7f7b
      alexeib authored
      0e9e7f7b
  2. 21 Jun, 2018 3 commits
  3. 15 Jun, 2018 6 commits
    • Myle Ott's avatar
    • Myle Ott's avatar
      Add FairseqTask · ff68a9ef
      Myle Ott authored
      A Task defines the data format, stores shared state (e.g., dictionaries) and provides helpers for building the model/criterion and calculating the loss.
      
      Changes:
      - Add TranslationTask and LanguageModelingTask. New tasks can be registered with @register_task decorator.
      - Add EpochBatchIterator to encapsulate batching and saving/restoring dataloader position
      - Remove LEFT_PAD_* constants and make them configurable per task
      ff68a9ef
    • Myle Ott's avatar
      Unify various sharding into ShardedIterator · 24d7de44
      Myle Ott authored
      24d7de44
    • Myle Ott's avatar
      76b5ecab
    • alexeib's avatar
      fix model loading in eval_lm · 6eda8e47
      alexeib authored
      6eda8e47
    • alexeib's avatar
      Conv lm implementation · 4c2ef2de
      alexeib authored
      This implements convolutional language model from https://arxiv.org/pdf/1612.08083.pdf
      
      There are 3 modes for constructing batches:
      
      - token block: fill each sample with a specified number of tokens without regard for sentence delimiters - this is what was used for training in the paper
      - complete: fill each sample with a specified number of tokens but make sure it contains only complete sentences (i.e. if next sentence goes over token block limit, move it to the next sample) - this was used for evaluation in the paper
      - eos: one sentence per sample (skip blank lines)
      
      some results:
      
      GCNN-13 - GBW - 37.46
      GCNN-14B - GBW - 33.88
      GCNN-8 - Wiki103 - 43.76
      GCNN-14 - Wiki103 - 35.66
      
      train:
      
      python train.py /private/home/abaevski/data/wiki103 --save-dir /tmp --fp16 --max-epoch 35 --save-interval 1 --save-interval-updates 1000 --keep-interval-updates 25 --arch fconv_lm --optimizer nag --lr 1.0 --lr-scheduler reduce_lr_on_plateau --lr-shrink 0.5 --decoder-embed-dim 280 --decoder-layers '[(850, 6)] * 3 + [(850,1)] + [(850,5)] * 4 + [(850,1)] + [(850,4)] * 3 + [(1024,4)] + [(2048, 4)]' --clip-norm 0.1 --dropout 0.2 --weight-decay 5e-06 --criterion cross_entropy --max-tokens 1024 --max-target-positions 1024 --seed 1 --log-format json --log-interval 500
      
      eval:
      
      python eval_lm.py ~abaevski/data/wiki103 --path '/checkpoint02/abaevski/2018-04-27/lm_wiki.fp16.mxup300000.fconv.adam.lrs=reduce_lr_on_plateau.emb280.layers(850,6)*3+(850,1)+(850,5)*4+(850,1)+(850,4)*3+(1024,1)+(2048,4).lr0.0005.clp0.1.drp0.3.wd0.0.crt=cross_entropy.mxtk2048.smptk256.seed1.ngpu8/checkpoint_last.pt'
      4c2ef2de