- 15 Jun, 2018 14 commits
-
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
Alexei Baevski authored
save best val loss in checkpoint and also print best so far this way when training continues from an existing checkpoint, we dont immediately override checkpoint_best with a worse loss
-
Angela Fan authored
-
alexeib authored
-
alexeib authored
-
alexeib authored
This implements convolutional language model from https://arxiv.org/pdf/1612.08083.pdf There are 3 modes for constructing batches: - token block: fill each sample with a specified number of tokens without regard for sentence delimiters - this is what was used for training in the paper - complete: fill each sample with a specified number of tokens but make sure it contains only complete sentences (i.e. if next sentence goes over token block limit, move it to the next sample) - this was used for evaluation in the paper - eos: one sentence per sample (skip blank lines) some results: GCNN-13 - GBW - 37.46 GCNN-14B - GBW - 33.88 GCNN-8 - Wiki103 - 43.76 GCNN-14 - Wiki103 - 35.66 train: python train.py /private/home/abaevski/data/wiki103 --save-dir /tmp --fp16 --max-epoch 35 --save-interval 1 --save-interval-updates 1000 --keep-interval-updates 25 --arch fconv_lm --optimizer nag --lr 1.0 --lr-scheduler reduce_lr_on_plateau --lr-shrink 0.5 --decoder-embed-dim 280 --decoder-layers '[(850, 6)] * 3 + [(850,1)] + [(850,5)] * 4 + [(850,1)] + [(850,4)] * 3 + [(1024,4)] + [(2048, 4)]' --clip-norm 0.1 --dropout 0.2 --weight-decay 5e-06 --criterion cross_entropy --max-tokens 1024 --max-target-positions 1024 --seed 1 --log-format json --log-interval 500 eval: python eval_lm.py ~abaevski/data/wiki103 --path '/checkpoint02/abaevski/2018-04-27/lm_wiki.fp16.mxup300000.fconv.adam.lrs=reduce_lr_on_plateau.emb280.layers(850,6)*3+(850,1)+(850,5)*4+(850,1)+(850,4)*3+(1024,1)+(2048,4).lr0.0005.clp0.1.drp0.3.wd0.0.crt=cross_entropy.mxtk2048.smptk256.seed1.ngpu8/checkpoint_last.pt'
-
alexeib authored
-
Alexei Baevski authored
-
Alexei Baevski authored
-
Myle Ott authored
-
Myle Ott authored
-
- 27 Feb, 2018 4 commits
-
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
This PR includes breaking API changes to modularize fairseq-py and adds support for distributed training across multiple nodes. Changes: - c7033ef: add support for distributed training! See updated README for usage. - e016299: modularize fairseq-py, adding support for register_model, register_criterion, register_optimizer, etc. - 154e440: update LSTM implementation to use PackedSequence objects in the encoder, better following best practices and improving perf - 90c2973 and 1da6265: improve unit test coverage
-
- 22 Jan, 2018 5 commits
-
-
Myle Ott authored
-
Sergey Edunov authored
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
- 06 Dec, 2017 1 commit
-
-
Myle Ott authored
-
- 02 Dec, 2017 1 commit
-
-
toothlessdragon authored
-
- 13 Nov, 2017 1 commit
-
-
Myle Ott authored
-
- 12 Nov, 2017 3 commits
- 08 Nov, 2017 7 commits
-
-
Louis Martin authored
* Add <eos> for unk replacement * Add IndexedRawTextDataset to load raw text files * Replace unk with original string * Add load_raw_text_dataset() and --output-format * Move has_binary_files to data.py
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
Myle Ott authored
-
- 19 Oct, 2017 4 commits
-
-
Myle Ott authored
-
Louis Martin authored
-
Myle Ott authored
-
Myle Ott authored
-