Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
Fairseq
Commits
ee36a6f3
Commit
ee36a6f3
authored
Jan 19, 2018
by
Michael Auli
Committed by
Myle Ott
Jan 22, 2018
Browse files
Fixed Weight Decay Regularization in Adam
See
https://arxiv.org/abs/1711.05101
parent
66d9fcf5
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
106 additions
and
2 deletions
+106
-2
fairseq/multiprocessing_trainer.py
fairseq/multiprocessing_trainer.py
+3
-2
fairseq/optim/adam.py
fairseq/optim/adam.py
+103
-0
fairseq/optim/nag.py
fairseq/optim/nag.py
+0
-0
No files found.
fairseq/multiprocessing_trainer.py
View file @
ee36a6f3
...
...
@@ -17,7 +17,8 @@ from torch.optim.lr_scheduler import LambdaLR, ReduceLROnPlateau
from
fairseq
import
nccl
,
utils
from
fairseq.multiprocessing_event_loop
import
MultiprocessingEventLoop
,
Future
from
fairseq.nag
import
NAG
from
fairseq.optim.nag
import
NAG
from
fairseq.optim.adam
import
Adam
class
MultiprocessingTrainer
(
MultiprocessingEventLoop
):
...
...
@@ -95,7 +96,7 @@ class MultiprocessingTrainer(MultiprocessingEventLoop):
'betas'
:
eval
(
self
.
args
.
adam_betas
),
'weight_decay'
:
self
.
args
.
weight_decay
,
}
return
torch
.
optim
.
Adam
(
self
.
model
.
parameters
(),
**
self
.
_override_optim_state
)
return
Adam
(
self
.
model
.
parameters
(),
**
self
.
_override_optim_state
)
elif
self
.
args
.
optimizer
==
'nag'
:
self
.
_override_optim_state
=
{
'lr'
:
self
.
args
.
lr
[
0
],
...
...
fairseq/optim/adam.py
0 → 100644
View file @
ee36a6f3
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#
import
math
import
torch
from
torch.optim.optimizer
import
Optimizer
class
Adam
(
Optimizer
):
"""Implements Adam algorithm.
It has been proposed in `Adam: A Method for Stochastic Optimization`_.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 1e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
amsgrad (boolean, optional): whether to use the AMSGrad variant of this
algorithm from the paper `On the Convergence of Adam and Beyond`_
.. _Adam\: A Method for Stochastic Optimization:
https://arxiv.org/abs/1412.6980
.. _On the Convergence of Adam and Beyond:
https://openreview.net/forum?id=ryQu7f-RZ
"""
def
__init__
(
self
,
params
,
lr
=
1e-3
,
betas
=
(
0.9
,
0.999
),
eps
=
1e-8
,
weight_decay
=
0
,
amsgrad
=
False
):
defaults
=
dict
(
lr
=
lr
,
betas
=
betas
,
eps
=
eps
,
weight_decay
=
weight_decay
,
amsgrad
=
amsgrad
)
super
(
Adam
,
self
).
__init__
(
params
,
defaults
)
def
step
(
self
,
closure
=
None
):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss
=
None
if
closure
is
not
None
:
loss
=
closure
()
for
group
in
self
.
param_groups
:
for
p
in
group
[
'params'
]:
if
p
.
grad
is
None
:
continue
grad
=
p
.
grad
.
data
if
grad
.
is_sparse
:
raise
RuntimeError
(
'Adam does not support sparse gradients, please consider SparseAdam instead'
)
amsgrad
=
group
[
'amsgrad'
]
state
=
self
.
state
[
p
]
# State initialization
if
len
(
state
)
==
0
:
state
[
'step'
]
=
0
# Exponential moving average of gradient values
state
[
'exp_avg'
]
=
torch
.
zeros_like
(
p
.
data
)
# Exponential moving average of squared gradient values
state
[
'exp_avg_sq'
]
=
torch
.
zeros_like
(
p
.
data
)
if
amsgrad
:
# Maintains max of all exp. moving avg. of sq. grad. values
state
[
'max_exp_avg_sq'
]
=
torch
.
zeros_like
(
p
.
data
)
exp_avg
,
exp_avg_sq
=
state
[
'exp_avg'
],
state
[
'exp_avg_sq'
]
if
amsgrad
:
max_exp_avg_sq
=
state
[
'max_exp_avg_sq'
]
beta1
,
beta2
=
group
[
'betas'
]
state
[
'step'
]
+=
1
# Decay the first and second moment running average coefficient
exp_avg
.
mul_
(
beta1
).
add_
(
1
-
beta1
,
grad
)
exp_avg_sq
.
mul_
(
beta2
).
addcmul_
(
1
-
beta2
,
grad
,
grad
)
if
amsgrad
:
# Maintains the maximum of all 2nd moment running avg. till now
torch
.
max
(
max_exp_avg_sq
,
exp_avg_sq
,
out
=
max_exp_avg_sq
)
# Use the max. for normalizing running avg. of gradient
denom
=
max_exp_avg_sq
.
sqrt
().
add_
(
group
[
'eps'
])
else
:
denom
=
exp_avg_sq
.
sqrt
().
add_
(
group
[
'eps'
])
bias_correction1
=
1
-
beta1
**
state
[
'step'
]
bias_correction2
=
1
-
beta2
**
state
[
'step'
]
step_size
=
group
[
'lr'
]
*
math
.
sqrt
(
bias_correction2
)
/
bias_correction1
if
group
[
'weight_decay'
]
!=
0
:
p
.
data
.
add_
(
-
group
[
'weight_decay'
],
p
.
data
)
p
.
data
.
addcdiv_
(
-
step_size
,
exp_avg
,
denom
)
return
loss
fairseq/nag.py
→
fairseq/
optim/
nag.py
View file @
ee36a6f3
File moved
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment