Commit e775877f authored by Myle Ott's avatar Myle Ott
Browse files

Add unit test to verify reproducibility after reloading checkpoints

parent 83e08b6f
......@@ -42,7 +42,7 @@ class FP16Optimizer(optim.FairseqOptimizer):
self.fp32_optimizer = fp32_optimizer
self.fp32_params = fp32_params
self.scaler = DynamicLossScaler(
init_scale=2.**7,
init_scale=args.fp16_init_scale,
scale_window=(2**14 / args.distributed_world_size),
)
......
......@@ -128,6 +128,8 @@ def get_parser(desc, default_task='translation'):
parser.add_argument('--seed', default=1, type=int, metavar='N',
help='pseudo random number generator seed')
parser.add_argument('--fp16', action='store_true', help='use FP16')
parser.add_argument('--fp16-init-scale', default=2**7, type=int,
help='default FP16 loss scale')
# Task definitions can be found under fairseq/tasks/
parser.add_argument(
......
......@@ -250,7 +250,8 @@ class Trainer(object):
)
self.meters['oom'].update(ooms)
self.meters['train_loss'].update(logging_output.get('loss', 0), sample_size)
self.meters['train_nll_loss'].update(logging_output.get('nll_loss', 0), ntokens)
if 'nll_loss' in logging_output:
self.meters['train_nll_loss'].update(logging_output.get('nll_loss', 0), ntokens)
except OverflowError as e:
print('| WARNING: overflow detected, ' + str(e))
self.zero_grad()
......@@ -301,7 +302,8 @@ class Trainer(object):
# update meters for validation
ntokens = logging_output.get('ntokens', 0)
self.meters['valid_loss'].update(logging_output.get('loss', 0), sample_size)
self.meters['valid_nll_loss'].update(logging_output.get('nll_loss', 0), ntokens)
if 'nll_loss' in logging_output:
self.meters['valid_nll_loss'].update(logging_output.get('nll_loss', 0), ntokens)
return logging_output
......
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import contextlib
from io import StringIO
import json
import os
import tempfile
import unittest
import torch
from fairseq import options
from . import test_binaries
class TestReproducibility(unittest.TestCase):
def _test_reproducibility(self, name, extra_flags=None):
if extra_flags is None:
extra_flags = []
with tempfile.TemporaryDirectory(name) as data_dir:
with contextlib.redirect_stdout(StringIO()):
test_binaries.create_dummy_data(data_dir)
test_binaries.preprocess_translation_data(data_dir)
# train epochs 1 and 2 together
stdout = StringIO()
with contextlib.redirect_stdout(stdout):
test_binaries.train_translation_model(
data_dir, 'fconv_iwslt_de_en', [
'--dropout', '0.0',
'--log-format', 'json',
'--log-interval', '1',
'--max-epoch', '3',
] + extra_flags,
)
stdout = stdout.getvalue()
train_log, valid_log = map(json.loads, stdout.split('\n')[-4:-2])
# train epoch 2, resuming from previous checkpoint 1
os.rename(
os.path.join(data_dir, 'checkpoint1.pt'),
os.path.join(data_dir, 'checkpoint_last.pt'),
)
stdout = StringIO()
with contextlib.redirect_stdout(stdout):
test_binaries.train_translation_model(
data_dir, 'fconv_iwslt_de_en', [
'--dropout', '0.0',
'--log-format', 'json',
'--log-interval', '1',
'--max-epoch', '3',
] + extra_flags,
)
stdout = stdout.getvalue()
train_res_log, valid_res_log = map(json.loads, stdout.split('\n')[-4:-2])
def cast(s):
return round(float(s), 3)
for k in ['loss', 'ppl', 'num_updates', 'gnorm']:
self.assertEqual(cast(train_log[k]), cast(train_res_log[k]))
for k in ['valid_loss', 'valid_ppl', 'num_updates', 'best']:
self.assertEqual(cast(valid_log[k]), cast(valid_res_log[k]))
def test_reproducibility(self):
self._test_reproducibility('test_reproducibility')
def test_reproducibility_fp16(self):
self._test_reproducibility('test_reproducibility_fp16', [
'--fp16',
'--fp16-init-scale', '4096',
])
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment