"git@developer.sourcefind.cn:OpenDAS/vision.git" did not exist on "194a084640bca80f99af121c2cd64755c31f64f3"
Commit c446c44b authored by Myle Ott's avatar Myle Ott Committed by Facebook Github Bot
Browse files

Add Adamax optimizer

Summary: Pull Request resolved: https://github.com/pytorch/fairseq/pull/914

Differential Revision: D16536670

Pulled By: myleott

fbshipit-source-id: 8a41c98f0fb87af6c384cdade756e3eae2978a88
parent 1362b21b
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
import torch
import torch.optim
from . import FairseqOptimizer, register_optimizer
@register_optimizer('adamax')
class FairseqAdamax(FairseqOptimizer):
def __init__(self, args, params):
super().__init__(args, params)
self._optimizer = Adamax(params, **self.optimizer_config)
@staticmethod
def add_args(parser):
"""Add optimizer-specific arguments to the parser."""
# fmt: off
parser.add_argument('--adamax-betas', default='(0.9, 0.999)', metavar='B',
help='betas for Adam optimizer')
parser.add_argument('--adamax-eps', type=float, default=1e-8, metavar='D',
help='epsilon for Adam optimizer')
parser.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='WD',
help='weight decay')
parser.add_argument('--no-bias-correction', default=False, action='store_true',
help='disable bias correction')
# fmt: on
@property
def optimizer_config(self):
"""
Return a kwarg dictionary that will be used to override optimizer
args stored in checkpoints. This allows us to load a checkpoint and
resume training using a different set of optimizer args, e.g., with a
different learning rate.
"""
return {
'lr': self.args.lr[0],
'betas': eval(self.args.adamax_betas),
'eps': self.args.adamax_eps,
'weight_decay': self.args.weight_decay,
'bias_correction': not self.args.no_bias_correction,
}
class Adamax(torch.optim.Optimizer):
"""Implements Adamax algorithm (a variant of Adam based on infinity norm).
It has been proposed in `Adam: A Method for Stochastic Optimization`__.
Compared to the version in PyTorch, this version implements a fix for weight decay.
Arguments:
params (iterable): iterable of parameters to optimize or dicts defining
parameter groups
lr (float, optional): learning rate (default: 2e-3)
betas (Tuple[float, float], optional): coefficients used for computing
running averages of gradient and its square
eps (float, optional): term added to the denominator to improve
numerical stability (default: 1e-8)
weight_decay (float, optional): weight decay (L2 penalty) (default: 0)
bias_correction (bool, optional): enable bias correction (default: True)
__ https://arxiv.org/abs/1412.6980
"""
def __init__(self, params, lr=2e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, bias_correction=True):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not 0.0 <= weight_decay:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
bias_correction=bias_correction)
super(Adamax, self).__init__(params, defaults)
@property
def supports_memory_efficient_fp16(self):
return True
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError('Adamax does not support sparse gradients')
p_data_fp32 = p.data.float()
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_inf'] = torch.zeros_like(p_data_fp32)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_inf'] = state['exp_inf'].type_as(p_data_fp32)
exp_avg, exp_inf = state['exp_avg'], state['exp_inf']
beta1, beta2 = group['betas']
eps = group['eps']
state['step'] += 1
# Update biased first moment estimate.
exp_avg.mul_(beta1).add_(1 - beta1, grad)
# Update the exponentially weighted infinity norm.
torch.max(
exp_inf.mul_(beta2),
grad.abs_(),
out=exp_inf,
)
step_size = group['lr']
if group['bias_correction']:
bias_correction = 1 - beta1 ** state['step']
step_size /= bias_correction
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32)
p_data_fp32.addcdiv_(-step_size, exp_avg, exp_inf.add(eps))
p.data.copy_(p_data_fp32)
return loss
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment