"megatron/vscode:/vscode.git/clone" did not exist on "8ba76558d04235be2ff2fb6932d18f8f041e18e0"
Commit 7df61696 authored by Sugon_ldc's avatar Sugon_ldc
Browse files

add fairseq0.10.2

parents
Pipeline #471 failed with stages
in 0 seconds
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.encoders import register_bpe
@register_bpe("hf_byte_bpe")
class HuggingFaceByteLevelBPE(object):
@staticmethod
def add_args(parser):
# fmt: off
parser.add_argument('--bpe-merges', help='path to merges.txt')
parser.add_argument('--bpe-vocab', help='path to vocab.json')
parser.add_argument('--bpe-add-prefix-space', action='store_true',
help='add prefix space before encoding')
# fmt: on
def __init__(self, args):
try:
from tokenizers import ByteLevelBPETokenizer
except ImportError:
raise ImportError(
"Please install huggingface/tokenizers with: " "pip install tokenizers"
)
self.bpe = ByteLevelBPETokenizer(
args.bpe_vocab,
args.bpe_merges,
add_prefix_space=getattr(args, "bpe_add_prefix_space", False),
)
def encode(self, x: str) -> str:
return " ".join(map(str, self.bpe.encode(x).ids))
def decode(self, x: str) -> str:
return self.bpe.decode(
[int(tok) if tok not in {"<unk>", "<mask>"} else tok for tok in x.split()]
)
def is_beginning_of_word(self, x: str) -> bool:
return self.decode(x).startswith(" ")
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.encoders import register_tokenizer
@register_tokenizer("moses")
class MosesTokenizer(object):
@staticmethod
def add_args(parser):
# fmt: off
parser.add_argument('--moses-source-lang', metavar='SRC',
help='source language')
parser.add_argument('--moses-target-lang', metavar='TARGET',
help='target language')
parser.add_argument('--moses-no-dash-splits', action='store_true', default=False,
help='don\'t apply dash split rules')
parser.add_argument('--moses-no-escape', action='store_true', default=False,
help='don\'t perform HTML escaping on apostrophy, quotes, etc.')
# fmt: on
def __init__(self, args):
self.args = args
if getattr(args, "moses_source_lang", None) is None:
args.moses_source_lang = getattr(args, "source_lang", "en")
if getattr(args, "moses_target_lang", None) is None:
args.moses_target_lang = getattr(args, "target_lang", "en")
try:
from sacremoses import MosesTokenizer, MosesDetokenizer
self.tok = MosesTokenizer(args.moses_source_lang)
self.detok = MosesDetokenizer(args.moses_target_lang)
except ImportError:
raise ImportError(
"Please install Moses tokenizer with: pip install sacremoses"
)
def encode(self, x: str) -> str:
return self.tok.tokenize(
x,
aggressive_dash_splits=(not self.args.moses_no_dash_splits),
return_str=True,
escape=(not self.args.moses_no_escape),
)
def decode(self, x: str) -> str:
return self.detok.detokenize(x.split())
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq.data.encoders import register_tokenizer
@register_tokenizer("nltk")
class NLTKTokenizer(object):
def __init__(self, source_lang=None, target_lang=None):
try:
from nltk.tokenize import word_tokenize
self.word_tokenize = word_tokenize
except ImportError:
raise ImportError("Please install nltk with: pip install nltk")
def encode(self, x: str) -> str:
return " ".join(self.word_tokenize(x))
def decode(self, x: str) -> str:
return x
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
@register_bpe("sentencepiece")
class SentencepieceBPE(object):
@staticmethod
def add_args(parser):
# fmt: off
parser.add_argument('--sentencepiece-model', type=str,
help='path to sentencepiece model')
# fmt: on
def __init__(self, args):
sentencepiece_model = file_utils.cached_path(args.sentencepiece_model)
try:
import sentencepiece as spm
self.sp = spm.SentencePieceProcessor()
self.sp.Load(sentencepiece_model)
except ImportError:
raise ImportError(
"Please install sentencepiece with: pip install sentencepiece"
)
def encode(self, x: str) -> str:
return " ".join(self.sp.EncodeAsPieces(x))
def decode(self, x: str) -> str:
return x.replace(" ", "").replace("\u2581", " ").strip()
def is_beginning_of_word(self, x: str) -> bool:
if x in ["<unk>", "<s>", "</s>", "<pad>"]:
# special elements are always considered beginnings
# HACK: this logic is already present in fairseq/tasks/masked_lm.py
# but these special tokens are also contained in the sentencepiece
# vocabulary which causes duplicate special tokens. This hack makes
# sure that they are all taken into account.
return True
return x.startswith("\u2581")
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
from fairseq.data.encoders import register_tokenizer
@register_tokenizer("space")
class SpaceTokenizer(object):
def __init__(self, source_lang=None, target_lang=None):
self.space_tok = re.compile(r"\s+")
def encode(self, x: str) -> str:
return self.space_tok.sub(" ", x)
def decode(self, x: str) -> str:
return x
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from fairseq import file_utils
from fairseq.data.encoders import register_bpe
@register_bpe("subword_nmt")
class SubwordNMTBPE(object):
@staticmethod
def add_args(parser):
# fmt: off
parser.add_argument('--bpe-codes', type=str,
help='path to subword NMT BPE')
parser.add_argument('--bpe-separator', default='@@',
help='BPE separator')
# fmt: on
def __init__(self, args):
if args.bpe_codes is None:
raise ValueError("--bpe-codes is required for --bpe=subword_nmt")
codes = file_utils.cached_path(args.bpe_codes)
try:
from subword_nmt import apply_bpe
bpe_parser = apply_bpe.create_parser()
bpe_args = bpe_parser.parse_args(
[
"--codes",
codes,
"--separator",
args.bpe_separator,
]
)
self.bpe = apply_bpe.BPE(
bpe_args.codes,
bpe_args.merges,
bpe_args.separator,
None,
bpe_args.glossaries,
)
self.bpe_symbol = bpe_args.separator + " "
except ImportError:
raise ImportError(
"Please install subword_nmt with: pip install subword-nmt"
)
def encode(self, x: str) -> str:
return self.bpe.process_line(x)
def decode(self, x: str) -> str:
return (x + " ").replace(self.bpe_symbol, "").rstrip()
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from fairseq.data import encoders
def get_whole_word_mask(args, dictionary):
bpe = encoders.build_bpe(args)
if bpe is not None:
def is_beginning_of_word(i):
if i < dictionary.nspecial:
# special elements are always considered beginnings
return True
tok = dictionary[i]
if tok.startswith("madeupword"):
return True
try:
return bpe.is_beginning_of_word(tok)
except ValueError:
return True
mask_whole_words = torch.ByteTensor(
list(map(is_beginning_of_word, range(len(dictionary))))
)
return mask_whole_words
return None
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import numpy as np
import torch.utils.data
from fairseq.data import data_utils
class EpochListening:
"""Mixin for receiving updates whenever the epoch increments."""
@property
def can_reuse_epoch_itr_across_epochs(self):
"""
Whether we can reuse the :class:`fairseq.data.EpochBatchIterator` for
this dataset across epochs.
This needs to return ``False`` if the sample sizes can change across
epochs, in which case we may need to regenerate batches at each epoch.
If your dataset relies in ``set_epoch`` then you should consider setting
this to ``False``.
"""
return True
def set_epoch(self, epoch):
"""Will receive the updated epoch number at the beginning of the epoch."""
pass
class FairseqDataset(torch.utils.data.Dataset, EpochListening):
"""A dataset that provides helpers for batching."""
def __getitem__(self, index):
raise NotImplementedError
def __len__(self):
raise NotImplementedError
def collater(self, samples):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch suitable for forwarding with a Model
"""
raise NotImplementedError
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
raise NotImplementedError
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
raise NotImplementedError
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
return np.arange(len(self), dtype=np.int64)
@property
def supports_prefetch(self):
"""Whether this dataset supports prefetching."""
return False
def attr(self, attr: str, index: int):
return getattr(self, attr, None)
def prefetch(self, indices):
"""Prefetch the data required for this epoch."""
raise NotImplementedError
def get_batch_shapes(self):
"""
Return a list of valid batch shapes, for example::
[(8, 512), (16, 256), (32, 128)]
The first dimension of each tuple is the batch size and can be ``None``
to automatically infer the max batch size based on ``--max-tokens``.
The second dimension of each tuple is the max supported length as given
by :func:`fairseq.data.FairseqDataset.num_tokens`.
This will be used by :func:`fairseq.data.FairseqDataset.batch_by_size`
to restrict batch shapes. This is useful on TPUs to avoid too many
dynamic shapes (and recompilations).
"""
return None
def batch_by_size(
self,
indices,
max_tokens=None,
max_sentences=None,
required_batch_size_multiple=1,
):
"""
Given an ordered set of indices, return batches according to
*max_tokens*, *max_sentences* and *required_batch_size_multiple*.
"""
from fairseq.data import data_utils
fixed_shapes = self.get_batch_shapes()
if fixed_shapes is not None:
def adjust_bsz(bsz, num_tokens):
if bsz is None:
assert max_tokens is not None, "Must specify --max-tokens"
bsz = max_tokens // num_tokens
if max_sentences is not None:
bsz = min(bsz, max_sentences)
elif (
bsz >= required_batch_size_multiple
and bsz % required_batch_size_multiple != 0
):
bsz -= bsz % required_batch_size_multiple
return bsz
fixed_shapes = np.array(
[
[adjust_bsz(bsz, num_tokens), num_tokens]
for (bsz, num_tokens) in fixed_shapes
]
)
return data_utils.batch_by_size(
indices,
num_tokens_fn=self.num_tokens,
max_tokens=max_tokens,
max_sentences=max_sentences,
required_batch_size_multiple=required_batch_size_multiple,
fixed_shapes=fixed_shapes,
)
def filter_indices_by_size(self, indices, max_sizes):
"""
Filter a list of sample indices. Remove those that are longer than
specified in *max_sizes*.
WARNING: don't update, override method in child classes
Args:
indices (np.array): original array of sample indices
max_sizes (int or list[int] or tuple[int]): max sample size,
can be defined separately for src and tgt (then list or tuple)
Returns:
np.array: filtered sample array
list: list of removed indices
"""
if isinstance(max_sizes, float) or isinstance(max_sizes, int):
if hasattr(self, "sizes") and isinstance(self.sizes, np.ndarray):
ignored = indices[self.sizes[indices] > max_sizes].tolist()
indices = indices[self.sizes[indices] <= max_sizes]
elif (
hasattr(self, "sizes")
and isinstance(self.sizes, list)
and len(self.sizes) == 1
):
ignored = indices[self.sizes[0][indices] > max_sizes].tolist()
indices = indices[self.sizes[0][indices] <= max_sizes]
else:
indices, ignored = data_utils._filter_by_size_dynamic(
indices, self.size, max_sizes
)
else:
indices, ignored = data_utils._filter_by_size_dynamic(
indices, self.size, max_sizes
)
return indices, ignored
@property
def supports_fetch_outside_dataloader(self):
"""Whether this dataset supports fetching outside the workers of the dataloader."""
return True
class FairseqIterableDataset(torch.utils.data.IterableDataset, EpochListening):
"""
For datasets that need to be read sequentially, usually because the data is
being streamed or otherwise can't be manipulated on a single machine.
"""
def __iter__(self):
raise NotImplementedError
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import subprocess
import threading
from pathlib import Path
import numpy as np
import torch
def fasta_file_path(prefix_path):
return prefix_path + ".fasta"
class FastaDataset(torch.utils.data.Dataset):
"""
For loading protein sequence datasets in the common FASTA data format
"""
def __init__(self, path: str, cache_indices=False):
self.fn = fasta_file_path(path)
self.threadlocal = threading.local()
self.cache = Path(f"{path}.fasta.idx.npy")
if cache_indices:
if self.cache.exists():
self.offsets, self.sizes = np.load(self.cache)
else:
self.offsets, self.sizes = self._build_index(path)
np.save(self.cache, np.stack([self.offsets, self.sizes]))
else:
self.offsets, self.sizes = self._build_index(path)
def _get_file(self):
if not hasattr(self.threadlocal, "f"):
self.threadlocal.f = open(self.fn, "r")
return self.threadlocal.f
def __getitem__(self, idx):
f = self._get_file()
f.seek(self.offsets[idx])
desc = f.readline().strip()
line = f.readline()
seq = ""
while line != "" and line[0] != ">":
seq += line.strip()
line = f.readline()
return desc, seq
def __len__(self):
return self.offsets.size
def _build_index(self, path: str):
# Use grep and awk to get 100M/s on local SSD.
# Should process your enormous 100G fasta in ~10 min single core...
path = fasta_file_path(path)
bytes_offsets = subprocess.check_output(
f"cat {path} | tqdm --bytes --total $(wc -c < {path})"
"| grep --byte-offset '^>' -o | cut -d: -f1",
shell=True,
)
fasta_lengths = subprocess.check_output(
f"cat {path} | tqdm --bytes --total $(wc -c < {path})"
"| awk '/^>/ {print \"\";next;} { printf(\"%s\",$0);}' | tail -n+2 | awk '{print length($1)}'",
shell=True,
)
bytes_np = np.fromstring(bytes_offsets, dtype=np.int64, sep=" ")
sizes_np = np.fromstring(fasta_lengths, dtype=np.int64, sep=" ")
return bytes_np, sizes_np
def __setstate__(self, state):
self.__dict__ = state
self.threadlocal = threading.local()
def __getstate__(self):
d = {}
for i, v in self.__dict__.items():
if i != "threadlocal":
d[i] = v
return d
def __del__(self):
if hasattr(self.threadlocal, "f"):
self.threadlocal.f.close()
del self.threadlocal.f
@staticmethod
def exists(path):
return os.path.exists(fasta_file_path(path))
class EncodedFastaDataset(FastaDataset):
"""
The FastaDataset returns raw sequences - this allows us to return
indices with a dictionary instead.
"""
def __init__(self, path, dictionary):
super().__init__(path, cache_indices=True)
self.dictionary = dictionary
def __getitem__(self, idx):
desc, seq = super().__getitem__(idx)
return self.dictionary.encode_line(seq, line_tokenizer=list).long()
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from . import FairseqDataset
class IdDataset(FairseqDataset):
def __getitem__(self, index):
return index
def __len__(self):
return 0
def collater(self, samples):
return torch.tensor(samples)
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import shutil
import struct
from functools import lru_cache
import numpy as np
import torch
from fairseq.data.fasta_dataset import FastaDataset
from fairseq.file_io import PathManager
from . import FairseqDataset
def __best_fitting_dtype(vocab_size=None):
if vocab_size is not None and vocab_size < 65500:
return np.uint16
else:
return np.int32
def get_available_dataset_impl():
return ["raw", "lazy", "cached", "mmap", "fasta"]
def infer_dataset_impl(path):
if IndexedRawTextDataset.exists(path):
return "raw"
elif IndexedDataset.exists(path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
if magic == IndexedDataset._HDR_MAGIC:
return "cached"
elif magic == MMapIndexedDataset.Index._HDR_MAGIC[:8]:
return "mmap"
else:
return None
elif FastaDataset.exists(path):
return "fasta"
else:
return None
def make_builder(out_file, impl, vocab_size=None):
if impl == "mmap":
return MMapIndexedDatasetBuilder(
out_file, dtype=__best_fitting_dtype(vocab_size)
)
elif impl == "fasta":
raise NotImplementedError
else:
return IndexedDatasetBuilder(out_file)
def make_dataset(path, impl, fix_lua_indexing=False, dictionary=None):
if impl == "raw" and IndexedRawTextDataset.exists(path):
assert dictionary is not None
return IndexedRawTextDataset(path, dictionary)
elif impl == "lazy" and IndexedDataset.exists(path):
return IndexedDataset(path, fix_lua_indexing=fix_lua_indexing)
elif impl == "cached" and IndexedDataset.exists(path):
return IndexedCachedDataset(path, fix_lua_indexing=fix_lua_indexing)
elif impl == "mmap" and MMapIndexedDataset.exists(path):
return MMapIndexedDataset(path)
elif impl == "fasta" and FastaDataset.exists(path):
from fairseq.data.fasta_dataset import EncodedFastaDataset
return EncodedFastaDataset(path, dictionary)
return None
def dataset_exists(path, impl):
if impl == "raw":
return IndexedRawTextDataset.exists(path)
elif impl == "mmap":
return MMapIndexedDataset.exists(path)
else:
return IndexedDataset.exists(path)
def read_longs(f, n):
a = np.empty(n, dtype=np.int64)
f.readinto(a)
return a
def write_longs(f, a):
f.write(np.array(a, dtype=np.int64))
dtypes = {
1: np.uint8,
2: np.int8,
3: np.int16,
4: np.int32,
5: np.int64,
6: np.float,
7: np.double,
8: np.uint16,
}
def code(dtype):
for k in dtypes.keys():
if dtypes[k] == dtype:
return k
raise ValueError(dtype)
def index_file_path(prefix_path):
return prefix_path + ".idx"
def data_file_path(prefix_path):
return prefix_path + ".bin"
class IndexedDataset(FairseqDataset):
"""Loader for TorchNet IndexedDataset"""
_HDR_MAGIC = b"TNTIDX\x00\x00"
def __init__(self, path, fix_lua_indexing=False):
super().__init__()
self.path = path
self.fix_lua_indexing = fix_lua_indexing
self.data_file = None
self.read_index(path)
def read_index(self, path):
with open(index_file_path(path), "rb") as f:
magic = f.read(8)
assert magic == self._HDR_MAGIC, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
version = f.read(8)
assert struct.unpack("<Q", version) == (1,)
code, self.element_size = struct.unpack("<QQ", f.read(16))
self.dtype = dtypes[code]
self._len, self.s = struct.unpack("<QQ", f.read(16))
self.dim_offsets = read_longs(f, self._len + 1)
self.data_offsets = read_longs(f, self._len + 1)
self.sizes = read_longs(f, self.s)
def read_data(self, path):
self.data_file = open(data_file_path(path), "rb", buffering=0)
def check_index(self, i):
if i < 0 or i >= self._len:
raise IndexError("index out of range")
def __del__(self):
if self.data_file:
self.data_file.close()
@lru_cache(maxsize=8)
def __getitem__(self, i):
if not self.data_file:
self.read_data(self.path)
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
item = torch.from_numpy(a).long()
if self.fix_lua_indexing:
item -= 1 # subtract 1 for 0-based indexing
return item
def __len__(self):
return self._len
def num_tokens(self, index):
return self.sizes[index]
def size(self, index):
return self.sizes[index]
@staticmethod
def exists(path):
return PathManager.exists(index_file_path(path)) and PathManager.exists(
data_file_path(path)
)
@property
def supports_prefetch(self):
return False # avoid prefetching to save memory
class IndexedCachedDataset(IndexedDataset):
def __init__(self, path, fix_lua_indexing=False):
super().__init__(path, fix_lua_indexing=fix_lua_indexing)
self.cache = None
self.cache_index = {}
@property
def supports_prefetch(self):
return True
def prefetch(self, indices):
if all(i in self.cache_index for i in indices):
return
if not self.data_file:
self.read_data(self.path)
indices = sorted(set(indices))
total_size = 0
for i in indices:
total_size += self.data_offsets[i + 1] - self.data_offsets[i]
self.cache = np.empty(total_size, dtype=self.dtype)
ptx = 0
self.cache_index.clear()
for i in indices:
self.cache_index[i] = ptx
size = self.data_offsets[i + 1] - self.data_offsets[i]
a = self.cache[ptx : ptx + size]
self.data_file.seek(self.data_offsets[i] * self.element_size)
self.data_file.readinto(a)
ptx += size
if self.data_file:
# close and delete data file after prefetch so we can pickle
self.data_file.close()
self.data_file = None
@lru_cache(maxsize=8)
def __getitem__(self, i):
self.check_index(i)
tensor_size = self.sizes[self.dim_offsets[i] : self.dim_offsets[i + 1]]
a = np.empty(tensor_size, dtype=self.dtype)
ptx = self.cache_index[i]
np.copyto(a, self.cache[ptx : ptx + a.size])
item = torch.from_numpy(a).long()
if self.fix_lua_indexing:
item -= 1 # subtract 1 for 0-based indexing
return item
class IndexedRawTextDataset(FairseqDataset):
"""Takes a text file as input and binarizes it in memory at instantiation.
Original lines are also kept in memory"""
def __init__(self, path, dictionary, append_eos=True, reverse_order=False):
self.tokens_list = []
self.lines = []
self.sizes = []
self.append_eos = append_eos
self.reverse_order = reverse_order
self.read_data(path, dictionary)
self.size = len(self.tokens_list)
def read_data(self, path, dictionary):
with open(path, "r", encoding="utf-8") as f:
for line in f:
self.lines.append(line.strip("\n"))
tokens = dictionary.encode_line(
line,
add_if_not_exist=False,
append_eos=self.append_eos,
reverse_order=self.reverse_order,
).long()
self.tokens_list.append(tokens)
self.sizes.append(len(tokens))
self.sizes = np.array(self.sizes)
def check_index(self, i):
if i < 0 or i >= self.size:
raise IndexError("index out of range")
@lru_cache(maxsize=8)
def __getitem__(self, i):
self.check_index(i)
return self.tokens_list[i]
def get_original_text(self, i):
self.check_index(i)
return self.lines[i]
def __del__(self):
pass
def __len__(self):
return self.size
def num_tokens(self, index):
return self.sizes[index]
def size(self, index):
return self.sizes[index]
@staticmethod
def exists(path):
return PathManager.exists(path)
class IndexedDatasetBuilder(object):
element_sizes = {
np.uint8: 1,
np.int8: 1,
np.int16: 2,
np.int32: 4,
np.int64: 8,
np.float: 4,
np.double: 8,
}
def __init__(self, out_file, dtype=np.int32):
self.out_file = open(out_file, "wb")
self.dtype = dtype
self.data_offsets = [0]
self.dim_offsets = [0]
self.sizes = []
self.element_size = self.element_sizes[self.dtype]
def add_item(self, tensor):
# +1 for Lua compatibility
bytes = self.out_file.write(np.array(tensor.numpy() + 1, dtype=self.dtype))
self.data_offsets.append(self.data_offsets[-1] + bytes / self.element_size)
for s in tensor.size():
self.sizes.append(s)
self.dim_offsets.append(self.dim_offsets[-1] + len(tensor.size()))
def merge_file_(self, another_file):
index = IndexedDataset(another_file)
assert index.dtype == self.dtype
begin = self.data_offsets[-1]
for offset in index.data_offsets[1:]:
self.data_offsets.append(begin + offset)
self.sizes.extend(index.sizes)
begin = self.dim_offsets[-1]
for dim_offset in index.dim_offsets[1:]:
self.dim_offsets.append(begin + dim_offset)
with open(data_file_path(another_file), "rb") as f:
while True:
data = f.read(1024)
if data:
self.out_file.write(data)
else:
break
def finalize(self, index_file):
self.out_file.close()
index = open(index_file, "wb")
index.write(b"TNTIDX\x00\x00")
index.write(struct.pack("<Q", 1))
index.write(struct.pack("<QQ", code(self.dtype), self.element_size))
index.write(struct.pack("<QQ", len(self.data_offsets) - 1, len(self.sizes)))
write_longs(index, self.dim_offsets)
write_longs(index, self.data_offsets)
write_longs(index, self.sizes)
index.close()
def _warmup_mmap_file(path):
with open(path, "rb") as stream:
while stream.read(100 * 1024 * 1024):
pass
class MMapIndexedDataset(torch.utils.data.Dataset):
class Index(object):
_HDR_MAGIC = b"MMIDIDX\x00\x00"
@classmethod
def writer(cls, path, dtype):
class _Writer(object):
def __enter__(self):
self._file = open(path, "wb")
self._file.write(cls._HDR_MAGIC)
self._file.write(struct.pack("<Q", 1))
self._file.write(struct.pack("<B", code(dtype)))
return self
@staticmethod
def _get_pointers(sizes):
dtype_size = dtype().itemsize
address = 0
pointers = []
for size in sizes:
pointers.append(address)
address += size * dtype_size
return pointers
def write(self, sizes):
pointers = self._get_pointers(sizes)
self._file.write(struct.pack("<Q", len(sizes)))
sizes = np.array(sizes, dtype=np.int32)
self._file.write(sizes.tobytes(order="C"))
del sizes
pointers = np.array(pointers, dtype=np.int64)
self._file.write(pointers.tobytes(order="C"))
del pointers
def __exit__(self, exc_type, exc_val, exc_tb):
self._file.close()
return _Writer()
def __init__(self, path):
with open(path, "rb") as stream:
magic_test = stream.read(9)
assert self._HDR_MAGIC == magic_test, (
"Index file doesn't match expected format. "
"Make sure that --dataset-impl is configured properly."
)
version = struct.unpack("<Q", stream.read(8))
assert (1,) == version
(dtype_code,) = struct.unpack("<B", stream.read(1))
self._dtype = dtypes[dtype_code]
self._dtype_size = self._dtype().itemsize
self._len = struct.unpack("<Q", stream.read(8))[0]
offset = stream.tell()
_warmup_mmap_file(path)
self._bin_buffer_mmap = np.memmap(path, mode="r", order="C")
self._bin_buffer = memoryview(self._bin_buffer_mmap)
self._sizes = np.frombuffer(
self._bin_buffer, dtype=np.int32, count=self._len, offset=offset
)
self._pointers = np.frombuffer(
self._bin_buffer,
dtype=np.int64,
count=self._len,
offset=offset + self._sizes.nbytes,
)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
@property
def dtype(self):
return self._dtype
@property
def sizes(self):
return self._sizes
@lru_cache(maxsize=8)
def __getitem__(self, i):
return self._pointers[i], self._sizes[i]
def __len__(self):
return self._len
def __init__(self, path):
super().__init__()
self._path = None
self._index = None
self._bin_buffer = None
self._do_init(path)
def __getstate__(self):
return self._path
def __setstate__(self, state):
self._do_init(state)
def _do_init(self, path):
self._path = path
self._index = self.Index(index_file_path(self._path))
_warmup_mmap_file(data_file_path(self._path))
self._bin_buffer_mmap = np.memmap(
data_file_path(self._path), mode="r", order="C"
)
self._bin_buffer = memoryview(self._bin_buffer_mmap)
def __del__(self):
self._bin_buffer_mmap._mmap.close()
del self._bin_buffer_mmap
del self._index
def __len__(self):
return len(self._index)
@lru_cache(maxsize=8)
def __getitem__(self, i):
ptr, size = self._index[i]
np_array = np.frombuffer(
self._bin_buffer, dtype=self._index.dtype, count=size, offset=ptr
)
if self._index.dtype != np.int64:
np_array = np_array.astype(np.int64)
return torch.from_numpy(np_array)
@property
def sizes(self):
return self._index.sizes
@property
def supports_prefetch(self):
return False
@staticmethod
def exists(path):
return PathManager.exists(index_file_path(path)) and PathManager.exists(
data_file_path(path)
)
def get_indexed_dataset_to_local(path):
local_index_path = PathManager.get_local_path(index_file_path(path))
local_data_path = PathManager.get_local_path(data_file_path(path))
assert local_index_path.endswith(".idx") and local_data_path.endswith(".bin"), (
"PathManager.get_local_path does not return files with expected patterns: "
f"{local_index_path} and {local_data_path}"
)
local_path = local_data_path[:-4] # stripping surfix ".bin"
assert local_path == local_index_path[:-4] # stripping surfix ".idx"
return local_path
class MMapIndexedDatasetBuilder(object):
def __init__(self, out_file, dtype=np.int64):
self._data_file = open(out_file, "wb")
self._dtype = dtype
self._sizes = []
def add_item(self, tensor):
np_array = np.array(tensor.numpy(), dtype=self._dtype)
self._data_file.write(np_array.tobytes(order="C"))
self._sizes.append(np_array.size)
def merge_file_(self, another_file):
# Concatenate index
index = MMapIndexedDataset.Index(index_file_path(another_file))
assert index.dtype == self._dtype
for size in index.sizes:
self._sizes.append(size)
# Concatenate data
with open(data_file_path(another_file), "rb") as f:
shutil.copyfileobj(f, self._data_file)
def finalize(self, index_file):
self._data_file.close()
with MMapIndexedDataset.Index.writer(index_file, self._dtype) as index:
index.write(self._sizes)
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import itertools
import logging
import math
import operator
import os
import queue
import time
from threading import Thread
import numpy as np
import torch
from fairseq.data import data_utils
logger = logging.getLogger(__name__)
# Object used by _background_consumer to signal the source is exhausted
# to the main thread.
_sentinel = object()
class CountingIterator(object):
"""Wrapper around an iterable that maintains the iteration count.
Args:
iterable (iterable): iterable to wrap
start (int): starting iteration count. Note that this doesn't
actually advance the iterator.
total (int): override the iterator length returned by
``__len__``. This can be used to truncate *iterator*.
Attributes:
n (int): number of elements consumed from this iterator
"""
def __init__(self, iterable, start=None, total=None):
self.iterable = iterable
self.itr = iter(self)
if start is None:
self.n = getattr(iterable, "n", 0)
else:
self.n = start
if total is None:
self.total = self.n + len(iterable)
else:
self.total = total
def __len__(self):
return self.total
def __iter__(self):
for x in self.iterable:
if self.n >= self.total:
raise RuntimeError(
"Mismatch between actual and expected iterable length. "
"This may be caused by resuming training from a checkpoint using "
"a different number of GPUs, in which case you can try the "
"--reset-dataloader option. Alternatively you may have a train or "
"validation set that is smaller than the number of GPUs. If none "
"of these apply, please report this to the fairseq developers."
)
self.n += 1
yield x
def __next__(self):
return next(self.itr)
def has_next(self):
"""Whether the iterator has been exhausted."""
return self.n < len(self)
def skip(self, num_to_skip):
"""Fast-forward the iterator by skipping *num_to_skip* elements."""
next(itertools.islice(self.itr, num_to_skip, num_to_skip), None)
return self
def take(self, n):
"""
Truncates the iterator to n elements at most.
"""
self.total = min(self.total, n)
# Propagate this change to the underlying iterator
# Only take after what we have already consumed (i.e. after restarting
# from checkpoint mid epoch, we have to subtract self.n which is the
# starting point)
#
# This to maintain the invariant self.total = self.n + len(iterable),
# before calling __next__ or __iter__
propagated_take = max(n - self.n, 0)
if hasattr(self.iterable, "take"):
self.iterable.take(propagated_take)
else:
self.iterable = itertools.islice(self.iterable, propagated_take)
class EpochBatchIterating(object):
def __len__(self) -> int:
raise NotImplementedError
@property
def next_epoch_idx(self):
raise NotImplementedError
def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False):
"""Return a new iterator over the dataset.
Args:
shuffle (bool, optional): shuffle batches before returning the
iterator (default: True).
fix_batches_to_gpus: ensure that batches are always
allocated to the same shards across epochs. Requires
that :attr:`dataset` supports prefetching (default: False).
"""
raise NotImplementedError
def end_of_epoch(self) -> bool:
"""Returns whether the most recent epoch iterator has been exhausted"""
raise NotImplementedError
@property
def iterations_in_epoch(self) -> int:
"""The number of consumed batches in the current epoch."""
raise NotImplementedError
def state_dict(self):
"""Returns a dictionary containing a whole state of the iterator."""
raise NotImplementedError
def load_state_dict(self, state_dict):
"""Copies the state of the iterator from the given *state_dict*."""
raise NotImplementedError
class StreamingEpochBatchIterator(EpochBatchIterating):
def __init__(
self,
dataset,
epoch=1,
num_shards=1,
shard_id=0,
):
assert isinstance(dataset, torch.utils.data.IterableDataset)
self.dataset = dataset
self.epoch = max(epoch, 1) # we use 1-based indexing for epochs
self._current_epoch_iterator = None
self.num_shards = num_shards
self.shard_id = shard_id
@property
def next_epoch_idx(self):
"""Return the epoch index after *next_epoch_itr* is called."""
if self._current_epoch_iterator is not None and self.end_of_epoch():
return self.epoch + 1
else:
return self.epoch
def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False):
self.epoch = self.next_epoch_idx
if hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(self.epoch)
self._current_epoch_iterator = CountingIterator(
iterable=ShardedIterator(
iterable=self.dataset,
num_shards=self.num_shards,
shard_id=self.shard_id,
),
)
return self._current_epoch_iterator
def end_of_epoch(self) -> bool:
return not self._current_epoch_iterator.has_next()
@property
def iterations_in_epoch(self) -> int:
if self._current_epoch_iterator is not None:
return self._current_epoch_iterator.n
return 0
def state_dict(self):
return {
"epoch": self.epoch,
}
def load_state_dict(self, state_dict):
self.epoch = state_dict["epoch"]
class EpochBatchIterator(EpochBatchIterating):
"""A multi-epoch iterator over a :class:`torch.utils.data.Dataset`.
Compared to :class:`torch.utils.data.DataLoader`, this iterator:
- can be reused across multiple epochs with the :func:`next_epoch_itr`
method (optionally shuffled between epochs)
- can be serialized/deserialized with the :func:`state_dict` and
:func:`load_state_dict` methods
- supports sharding with the *num_shards* and *shard_id* arguments
Args:
dataset (~torch.utils.data.Dataset): dataset from which to load the data
collate_fn (callable): merges a list of samples to form a mini-batch
batch_sampler (~torch.utils.data.Sampler or a callable): an iterator over batches of
indices, or a callable to create such an iterator (~torch.utils.data.Sampler).
A callable batch_sampler will be called for each epoch to enable per epoch dynamic
batch iterators defined by this callable batch_sampler.
seed (int, optional): seed for random number generator for
reproducibility (default: 1).
num_shards (int, optional): shard the data iterator into N
shards (default: 1).
shard_id (int, optional): which shard of the data iterator to
return (default: 0).
num_workers (int, optional): how many subprocesses to use for data
loading. 0 means the data will be loaded in the main process
(default: 0).
epoch (int, optional): the epoch to start the iterator from
(default: 1).
buffer_size (int, optional): the number of batches to keep ready in the
queue. Helps speeding up dataloading. When buffer_size is zero, the
default torch.utils.data.DataLoader preloading is used.
timeout (int, optional): if positive, the timeout value for collecting a batch
from workers. Should always be non-negative (default: ``0``).
disable_shuffling (bool, optional): force disable shuffling
(default: ``False``).
"""
def __init__(
self,
dataset,
collate_fn,
batch_sampler,
seed=1,
num_shards=1,
shard_id=0,
num_workers=0,
epoch=1,
buffer_size=0,
timeout=0,
disable_shuffling=False,
):
assert isinstance(dataset, torch.utils.data.Dataset)
self.dataset = dataset
self.collate_fn = collate_fn
self.batch_sampler = batch_sampler
self._frozen_batches = (
tuple(batch_sampler) if not callable(batch_sampler) else None
)
self.seed = seed
self.num_shards = num_shards
self.shard_id = shard_id
self.num_workers = num_workers
# This upper limit here is to prevent people from abusing this feature
# in a shared computing environment.
self.buffer_size = min(buffer_size, 20)
self.timeout = timeout
self.disable_shuffling = disable_shuffling
self.epoch = max(epoch, 1) # we use 1-based indexing for epochs
self.shuffle = not disable_shuffling
self._cur_epoch_itr = None
self._next_epoch_itr = None
self._supports_prefetch = getattr(dataset, "supports_prefetch", False)
@property
def frozen_batches(self):
if self._frozen_batches is None:
self._frozen_batches = tuple(self.batch_sampler(self.dataset, self.epoch))
return self._frozen_batches
@property
def first_batch(self):
if len(self.frozen_batches) == 0:
raise Exception(
"The dataset is empty. This could indicate "
"that all elements in the dataset have been skipped. "
"Try increasing the max number of allowed tokens or using "
"a larger dataset."
)
if getattr(self.dataset, "supports_fetch_outside_dataloader", True):
return self.collate_fn([self.dataset[i] for i in self.frozen_batches[0]])
else:
return "DUMMY"
def __len__(self):
return int(math.ceil(len(self.frozen_batches) / float(self.num_shards)))
@property
def n(self):
return self.iterations_in_epoch
@property
def next_epoch_idx(self):
"""Return the epoch index after *next_epoch_itr* is called."""
if self._next_epoch_itr is not None:
return self.epoch
elif self._cur_epoch_itr is not None and self.end_of_epoch():
return self.epoch + 1
else:
return self.epoch
def next_epoch_itr(self, shuffle=True, fix_batches_to_gpus=False):
"""Return a new iterator over the dataset.
Args:
shuffle (bool, optional): shuffle batches before returning the
iterator (default: True).
fix_batches_to_gpus: ensure that batches are always
allocated to the same shards across epochs. Requires
that :attr:`dataset` supports prefetching (default: False).
"""
if self.disable_shuffling:
shuffle = False
self.epoch = self.next_epoch_idx
if hasattr(self.dataset, "set_epoch"):
self.dataset.set_epoch(self.epoch)
if self._next_epoch_itr is not None:
self._cur_epoch_itr = self._next_epoch_itr
self._next_epoch_itr = None
else:
if callable(self.batch_sampler):
# reset _frozen_batches to refresh the next epoch
self._frozen_batches = None
self._cur_epoch_itr = self._get_iterator_for_epoch(
self.epoch,
shuffle,
fix_batches_to_gpus=fix_batches_to_gpus,
)
self.shuffle = shuffle
return self._cur_epoch_itr
def end_of_epoch(self) -> bool:
"""Returns whether the most recent epoch iterator has been exhausted"""
return not self._cur_epoch_itr.has_next()
@property
def iterations_in_epoch(self):
"""The number of consumed batches in the current epoch."""
if self._cur_epoch_itr is not None:
return self._cur_epoch_itr.n
elif self._next_epoch_itr is not None:
return self._next_epoch_itr.n
return 0
def state_dict(self):
"""Returns a dictionary containing a whole state of the iterator."""
if self.end_of_epoch():
epoch = self.epoch + 1
iter_in_epoch = 0
else:
epoch = self.epoch
iter_in_epoch = self.iterations_in_epoch
return {
"version": 2,
"epoch": epoch,
"iterations_in_epoch": iter_in_epoch,
"shuffle": self.shuffle,
}
def load_state_dict(self, state_dict):
"""Copies the state of the iterator from the given *state_dict*."""
self.epoch = state_dict["epoch"]
itr_pos = state_dict.get("iterations_in_epoch", 0)
version = state_dict.get("version", 1)
if itr_pos > 0:
# fast-forward epoch iterator
self._next_epoch_itr = self._get_iterator_for_epoch(
self.epoch,
shuffle=state_dict.get("shuffle", True),
offset=itr_pos,
)
if self._next_epoch_itr is None:
if version == 1:
# legacy behavior: we finished the epoch, increment epoch counter
self.epoch += 1
else:
raise RuntimeError(
"Cannot resume training due to dataloader mismatch, please "
"report this to the fairseq developers. You can relaunch "
"training with `--reset-dataloader` and it should work."
)
else:
self._next_epoch_itr = None
def _get_iterator_for_epoch(
self, epoch, shuffle, fix_batches_to_gpus=False, offset=0
):
def shuffle_batches(batches, seed):
with data_utils.numpy_seed(seed):
np.random.shuffle(batches)
return batches
if self._supports_prefetch:
batches = self.frozen_batches
if shuffle and not fix_batches_to_gpus:
batches = shuffle_batches(list(batches), self.seed + epoch)
batches = list(
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[])
)
self.dataset.prefetch([i for s in batches for i in s])
if shuffle and fix_batches_to_gpus:
batches = shuffle_batches(batches, self.seed + epoch + self.shard_id)
else:
if shuffle:
batches = shuffle_batches(list(self.frozen_batches), self.seed + epoch)
else:
batches = self.frozen_batches
batches = list(
ShardedIterator(batches, self.num_shards, self.shard_id, fill_value=[])
)
if offset > 0 and offset >= len(batches):
return None
if self.num_workers > 0:
os.environ["PYTHONWARNINGS"] = "ignore:semaphore_tracker:UserWarning"
# Create data loader
itr = torch.utils.data.DataLoader(
self.dataset,
collate_fn=self.collate_fn,
batch_sampler=batches[offset:],
num_workers=self.num_workers,
timeout=self.timeout,
)
# Wrap with a BufferedIterator if needed
if self.buffer_size > 0:
itr = BufferedIterator(self.buffer_size, itr)
# Wrap with CoutingIterator
itr = CountingIterator(itr, start=offset)
return itr
class GroupedIterator(CountingIterator):
"""Wrapper around an iterable that returns groups (chunks) of items.
Args:
iterable (iterable): iterable to wrap
chunk_size (int): size of each chunk
Attributes:
n (int): number of elements consumed from this iterator
"""
def __init__(self, iterable, chunk_size):
itr = _chunk_iterator(iterable, chunk_size)
super().__init__(
itr,
start=int(math.ceil(getattr(iterable, "n", 0) / float(chunk_size))),
total=int(math.ceil(len(iterable) / float(chunk_size))),
)
self.chunk_size = chunk_size
def _chunk_iterator(itr, chunk_size):
chunk = []
for x in itr:
chunk.append(x)
if len(chunk) == chunk_size:
yield chunk
chunk = []
if len(chunk) > 0:
yield chunk
class ShardedIterator(CountingIterator):
"""A sharded wrapper around an iterable, padded to length.
Args:
iterable (iterable): iterable to wrap
num_shards (int): number of shards to split the iterable into
shard_id (int): which shard to iterator over
fill_value (Any, optional): padding value when the iterable doesn't
evenly divide *num_shards* (default: None).
Attributes:
n (int): number of elements consumed from this iterator
"""
def __init__(self, iterable, num_shards, shard_id, fill_value=None):
if shard_id < 0 or shard_id >= num_shards:
raise ValueError("shard_id must be between 0 and num_shards")
sharded_len = int(math.ceil(len(iterable) / float(num_shards)))
itr = map(
operator.itemgetter(1),
itertools.zip_longest(
range(sharded_len),
itertools.islice(iterable, shard_id, len(iterable), num_shards),
fillvalue=fill_value,
),
)
super().__init__(
itr,
start=int(math.ceil(getattr(iterable, "n", 0) / float(num_shards))),
total=sharded_len,
)
class BackgroundConsumer(Thread):
def __init__(self, queue, source, max_len):
Thread.__init__(self)
self._queue = queue
self._source = source
self._max_len = max_len
self.count = 0
def run(self):
try:
for item in self._source:
self._queue.put(item)
# Stop if we reached the maximum length
self.count += 1
if self._max_len is not None and self.count >= self._max_len:
break
# Signal the consumer we are done.
self._queue.put(_sentinel)
except Exception as e:
self._queue.put(e)
class BufferedIterator(object):
def __init__(self, size, iterable):
self._queue = queue.Queue(size)
self._iterable = iterable
self._consumer = None
self.start_time = time.time()
self.warning_time = None
self.total = len(iterable)
def _create_consumer(self):
self._consumer = BackgroundConsumer(
self._queue,
self._iterable,
self.total,
)
self._consumer.daemon = True
self._consumer.start()
def __iter__(self):
return self
def __len__(self):
return self.total
def take(self, n):
self.total = min(self.total, n)
# Propagate this change to the underlying iterator
if hasattr(self._iterable, "take"):
self._iterable.take(n)
def __next__(self):
# Create consumer if not created yet
if self._consumer is None:
self._create_consumer()
# Notify the user if there is a data loading bottleneck
if self._queue.qsize() < min(2, max(1, self._queue.maxsize // 2)):
if time.time() - self.start_time > 5 * 60:
if (
self.warning_time is None
or time.time() - self.warning_time > 15 * 60
):
logger.debug(
"Data loading buffer is empty or nearly empty. This may "
"indicate a data loading bottleneck, and increasing the "
"number of workers (--num-workers) may help."
)
self.warning_time = time.time()
# Get next example
item = self._queue.get(True)
if isinstance(item, Exception):
raise item
if item is _sentinel:
raise StopIteration()
return item
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import logging
import numpy as np
import torch
from fairseq.data import FairseqDataset, data_utils
logger = logging.getLogger(__name__)
def collate(
samples,
pad_idx,
eos_idx,
left_pad_source=True,
left_pad_target=False,
input_feeding=True,
pad_to_length=None,
pad_to_multiple=1,
):
if len(samples) == 0:
return {}
def merge(key, left_pad, move_eos_to_beginning=False, pad_to_length=None):
return data_utils.collate_tokens(
[s[key] for s in samples],
pad_idx,
eos_idx,
left_pad,
move_eos_to_beginning,
pad_to_length=pad_to_length,
pad_to_multiple=pad_to_multiple,
)
def check_alignment(alignment, src_len, tgt_len):
if alignment is None or len(alignment) == 0:
return False
if (
alignment[:, 0].max().item() >= src_len - 1
or alignment[:, 1].max().item() >= tgt_len - 1
):
logger.warning("alignment size mismatch found, skipping alignment!")
return False
return True
def compute_alignment_weights(alignments):
"""
Given a tensor of shape [:, 2] containing the source-target indices
corresponding to the alignments, a weight vector containing the
inverse frequency of each target index is computed.
For e.g. if alignments = [[5, 7], [2, 3], [1, 3], [4, 2]], then
a tensor containing [1., 0.5, 0.5, 1] should be returned (since target
index 3 is repeated twice)
"""
align_tgt = alignments[:, 1]
_, align_tgt_i, align_tgt_c = torch.unique(
align_tgt, return_inverse=True, return_counts=True
)
align_weights = align_tgt_c[align_tgt_i[np.arange(len(align_tgt))]]
return 1.0 / align_weights.float()
id = torch.LongTensor([s["id"] for s in samples])
src_tokens = merge(
"source",
left_pad=left_pad_source,
pad_to_length=pad_to_length["source"] if pad_to_length is not None else None,
)
# sort by descending source length
src_lengths = torch.LongTensor(
[s["source"].ne(pad_idx).long().sum() for s in samples]
)
src_lengths, sort_order = src_lengths.sort(descending=True)
id = id.index_select(0, sort_order)
src_tokens = src_tokens.index_select(0, sort_order)
prev_output_tokens = None
target = None
if samples[0].get("target", None) is not None:
target = merge(
"target",
left_pad=left_pad_target,
pad_to_length=pad_to_length["target"]
if pad_to_length is not None
else None,
)
target = target.index_select(0, sort_order)
tgt_lengths = torch.LongTensor(
[s["target"].ne(pad_idx).long().sum() for s in samples]
).index_select(0, sort_order)
ntokens = tgt_lengths.sum().item()
if samples[0].get("prev_output_tokens", None) is not None:
prev_output_tokens = merge("prev_output_tokens", left_pad=left_pad_target)
elif input_feeding:
# we create a shifted version of targets for feeding the
# previous output token(s) into the next decoder step
prev_output_tokens = merge(
"target",
left_pad=left_pad_target,
move_eos_to_beginning=True,
pad_to_length=pad_to_length["target"]
if pad_to_length is not None
else None,
)
else:
ntokens = src_lengths.sum().item()
batch = {
"id": id,
"nsentences": len(samples),
"ntokens": ntokens,
"net_input": {
"src_tokens": src_tokens,
"src_lengths": src_lengths,
},
"target": target,
}
if prev_output_tokens is not None:
batch["net_input"]["prev_output_tokens"] = prev_output_tokens.index_select(
0, sort_order
)
if samples[0].get("alignment", None) is not None:
bsz, tgt_sz = batch["target"].shape
src_sz = batch["net_input"]["src_tokens"].shape[1]
offsets = torch.zeros((len(sort_order), 2), dtype=torch.long)
offsets[:, 1] += torch.arange(len(sort_order), dtype=torch.long) * tgt_sz
if left_pad_source:
offsets[:, 0] += src_sz - src_lengths
if left_pad_target:
offsets[:, 1] += tgt_sz - tgt_lengths
alignments = [
alignment + offset
for align_idx, offset, src_len, tgt_len in zip(
sort_order, offsets, src_lengths, tgt_lengths
)
for alignment in [samples[align_idx]["alignment"].view(-1, 2)]
if check_alignment(alignment, src_len, tgt_len)
]
if len(alignments) > 0:
alignments = torch.cat(alignments, dim=0)
align_weights = compute_alignment_weights(alignments)
batch["alignments"] = alignments
batch["align_weights"] = align_weights
if samples[0].get("constraints", None) is not None:
# Collate the packed constraints across the samples, padding to
# the length of the longest sample.
lens = [sample.get("constraints").size(0) for sample in samples]
max_len = max(lens)
constraints = torch.zeros((len(samples), max(lens))).long()
for i, sample in enumerate(samples):
constraints[i, 0 : lens[i]] = samples[i].get("constraints")
batch["constraints"] = constraints
return batch
class LanguagePairDataset(FairseqDataset):
"""
A pair of torch.utils.data.Datasets.
Args:
src (torch.utils.data.Dataset): source dataset to wrap
src_sizes (List[int]): source sentence lengths
src_dict (~fairseq.data.Dictionary): source vocabulary
tgt (torch.utils.data.Dataset, optional): target dataset to wrap
tgt_sizes (List[int], optional): target sentence lengths
tgt_dict (~fairseq.data.Dictionary, optional): target vocabulary
left_pad_source (bool, optional): pad source tensors on the left side
(default: True).
left_pad_target (bool, optional): pad target tensors on the left side
(default: False).
shuffle (bool, optional): shuffle dataset elements before batching
(default: True).
input_feeding (bool, optional): create a shifted version of the targets
to be passed into the model for teacher forcing (default: True).
remove_eos_from_source (bool, optional): if set, removes eos from end
of source if it's present (default: False).
append_eos_to_target (bool, optional): if set, appends eos to end of
target if it's absent (default: False).
align_dataset (torch.utils.data.Dataset, optional): dataset
containing alignments.
constraints (Tensor, optional): 2d tensor with a concatenated, zero-
delimited list of constraints for each sentence.
append_bos (bool, optional): if set, appends bos to the beginning of
source/target sentence.
num_buckets (int, optional): if set to a value greater than 0, then
batches will be bucketed into the given number of batch shapes.
src_lang_id (int, optional): source language ID, if set, the collated batch
will contain a field 'src_lang_id' in 'net_input' which indicates the
source language of the samples.
tgt_lang_id (int, optional): target language ID, if set, the collated batch
will contain a field 'tgt_lang_id' which indicates the target language
of the samples.
"""
def __init__(
self,
src,
src_sizes,
src_dict,
tgt=None,
tgt_sizes=None,
tgt_dict=None,
left_pad_source=True,
left_pad_target=False,
shuffle=True,
input_feeding=True,
remove_eos_from_source=False,
append_eos_to_target=False,
align_dataset=None,
constraints=None,
append_bos=False,
eos=None,
num_buckets=0,
src_lang_id=None,
tgt_lang_id=None,
pad_to_multiple=1,
):
if tgt_dict is not None:
assert src_dict.pad() == tgt_dict.pad()
assert src_dict.eos() == tgt_dict.eos()
assert src_dict.unk() == tgt_dict.unk()
if tgt is not None:
assert len(src) == len(
tgt
), "Source and target must contain the same number of examples"
self.src = src
self.tgt = tgt
self.src_sizes = np.array(src_sizes)
self.tgt_sizes = np.array(tgt_sizes) if tgt_sizes is not None else None
self.sizes = (
np.vstack((self.src_sizes, self.tgt_sizes)).T
if self.tgt_sizes is not None
else self.src_sizes
)
self.src_dict = src_dict
self.tgt_dict = tgt_dict
self.left_pad_source = left_pad_source
self.left_pad_target = left_pad_target
self.shuffle = shuffle
self.input_feeding = input_feeding
self.remove_eos_from_source = remove_eos_from_source
self.append_eos_to_target = append_eos_to_target
self.align_dataset = align_dataset
if self.align_dataset is not None:
assert (
self.tgt_sizes is not None
), "Both source and target needed when alignments are provided"
self.constraints = constraints
self.append_bos = append_bos
self.eos = eos if eos is not None else src_dict.eos()
self.src_lang_id = src_lang_id
self.tgt_lang_id = tgt_lang_id
if num_buckets > 0:
from fairseq.data import BucketPadLengthDataset
self.src = BucketPadLengthDataset(
self.src,
sizes=self.src_sizes,
num_buckets=num_buckets,
pad_idx=self.src_dict.pad(),
left_pad=self.left_pad_source,
)
self.src_sizes = self.src.sizes
logger.info("bucketing source lengths: {}".format(list(self.src.buckets)))
if self.tgt is not None:
self.tgt = BucketPadLengthDataset(
self.tgt,
sizes=self.tgt_sizes,
num_buckets=num_buckets,
pad_idx=self.tgt_dict.pad(),
left_pad=self.left_pad_target,
)
self.tgt_sizes = self.tgt.sizes
logger.info(
"bucketing target lengths: {}".format(list(self.tgt.buckets))
)
# determine bucket sizes using self.num_tokens, which will return
# the padded lengths (thanks to BucketPadLengthDataset)
num_tokens = np.vectorize(self.num_tokens, otypes=[np.long])
self.bucketed_num_tokens = num_tokens(np.arange(len(self.src)))
self.buckets = [
(None, num_tokens) for num_tokens in np.unique(self.bucketed_num_tokens)
]
else:
self.buckets = None
self.pad_to_multiple = pad_to_multiple
def get_batch_shapes(self):
return self.buckets
def __getitem__(self, index):
tgt_item = self.tgt[index] if self.tgt is not None else None
src_item = self.src[index]
# Append EOS to end of tgt sentence if it does not have an EOS and remove
# EOS from end of src sentence if it exists. This is useful when we use
# use existing datasets for opposite directions i.e., when we want to
# use tgt_dataset as src_dataset and vice versa
if self.append_eos_to_target:
eos = self.tgt_dict.eos() if self.tgt_dict else self.src_dict.eos()
if self.tgt and self.tgt[index][-1] != eos:
tgt_item = torch.cat([self.tgt[index], torch.LongTensor([eos])])
if self.append_bos:
bos = self.tgt_dict.bos() if self.tgt_dict else self.src_dict.bos()
if self.tgt and self.tgt[index][0] != bos:
tgt_item = torch.cat([torch.LongTensor([bos]), self.tgt[index]])
bos = self.src_dict.bos()
if self.src[index][0] != bos:
src_item = torch.cat([torch.LongTensor([bos]), self.src[index]])
if self.remove_eos_from_source:
eos = self.src_dict.eos()
if self.src[index][-1] == eos:
src_item = self.src[index][:-1]
example = {
"id": index,
"source": src_item,
"target": tgt_item,
}
if self.align_dataset is not None:
example["alignment"] = self.align_dataset[index]
if self.constraints is not None:
example["constraints"] = self.constraints[index]
return example
def __len__(self):
return len(self.src)
def collater(self, samples, pad_to_length=None):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
pad_to_length (dict, optional): a dictionary of
{'source': source_pad_to_length, 'target': target_pad_to_length}
to indicate the max length to pad to in source and target respectively.
Returns:
dict: a mini-batch with the following keys:
- `id` (LongTensor): example IDs in the original input order
- `ntokens` (int): total number of tokens in the batch
- `net_input` (dict): the input to the Model, containing keys:
- `src_tokens` (LongTensor): a padded 2D Tensor of tokens in
the source sentence of shape `(bsz, src_len)`. Padding will
appear on the left if *left_pad_source* is ``True``.
- `src_lengths` (LongTensor): 1D Tensor of the unpadded
lengths of each source sentence of shape `(bsz)`
- `prev_output_tokens` (LongTensor): a padded 2D Tensor of
tokens in the target sentence, shifted right by one
position for teacher forcing, of shape `(bsz, tgt_len)`.
This key will not be present if *input_feeding* is
``False``. Padding will appear on the left if
*left_pad_target* is ``True``.
- `src_lang_id` (LongTensor): a long Tensor which contains source
language IDs of each sample in the batch
- `target` (LongTensor): a padded 2D Tensor of tokens in the
target sentence of shape `(bsz, tgt_len)`. Padding will appear
on the left if *left_pad_target* is ``True``.
- `tgt_lang_id` (LongTensor): a long Tensor which contains target language
IDs of each sample in the batch
"""
res = collate(
samples,
pad_idx=self.src_dict.pad(),
eos_idx=self.eos,
left_pad_source=self.left_pad_source,
left_pad_target=self.left_pad_target,
input_feeding=self.input_feeding,
pad_to_length=pad_to_length,
pad_to_multiple=self.pad_to_multiple,
)
if self.src_lang_id is not None or self.tgt_lang_id is not None:
src_tokens = res["net_input"]["src_tokens"]
bsz = src_tokens.size(0)
if self.src_lang_id is not None:
res["net_input"]["src_lang_id"] = (
torch.LongTensor([[self.src_lang_id]]).expand(bsz, 1).to(src_tokens)
)
if self.tgt_lang_id is not None:
res["tgt_lang_id"] = (
torch.LongTensor([[self.tgt_lang_id]]).expand(bsz, 1).to(src_tokens)
)
return res
def num_tokens(self, index):
"""Return the number of tokens in a sample. This value is used to
enforce ``--max-tokens`` during batching."""
return max(
self.src_sizes[index],
self.tgt_sizes[index] if self.tgt_sizes is not None else 0,
)
def size(self, index):
"""Return an example's size as a float or tuple. This value is used when
filtering a dataset with ``--max-positions``."""
return (
self.src_sizes[index],
self.tgt_sizes[index] if self.tgt_sizes is not None else 0,
)
def ordered_indices(self):
"""Return an ordered list of indices. Batches will be constructed based
on this order."""
if self.shuffle:
indices = np.random.permutation(len(self)).astype(np.int64)
else:
indices = np.arange(len(self), dtype=np.int64)
if self.buckets is None:
# sort by target length, then source length
if self.tgt_sizes is not None:
indices = indices[np.argsort(self.tgt_sizes[indices], kind="mergesort")]
return indices[np.argsort(self.src_sizes[indices], kind="mergesort")]
else:
# sort by bucketed_num_tokens, which is:
# max(padded_src_len, padded_tgt_len)
return indices[
np.argsort(self.bucketed_num_tokens[indices], kind="mergesort")
]
@property
def supports_prefetch(self):
return getattr(self.src, "supports_prefetch", False) and (
getattr(self.tgt, "supports_prefetch", False) or self.tgt is None
)
def prefetch(self, indices):
self.src.prefetch(indices)
if self.tgt is not None:
self.tgt.prefetch(indices)
if self.align_dataset is not None:
self.align_dataset.prefetch(indices)
def filter_indices_by_size(self, indices, max_sizes):
"""Filter a list of sample indices. Remove those that are longer
than specified in max_sizes.
Args:
indices (np.array): original array of sample indices
max_sizes (int or list[int] or tuple[int]): max sample size,
can be defined separately for src and tgt (then list or tuple)
Returns:
np.array: filtered sample array
list: list of removed indices
"""
return data_utils.filter_paired_dataset_indices_by_size(
self.src_sizes,
self.tgt_sizes,
indices,
max_sizes,
)
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from .block_pair_dataset import BlockPairDataset
from .masked_lm_dataset import MaskedLMDataset
from .masked_lm_dictionary import BertDictionary, MaskedLMDictionary
__all__ = [
"BertDictionary",
"BlockPairDataset",
"MaskedLMDataset",
"MaskedLMDictionary",
]
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import numpy as np
import torch
from fairseq.data import FairseqDataset
class BlockPairDataset(FairseqDataset):
"""Break a Dataset of tokens into sentence pair blocks for next sentence
prediction as well as masked language model.
High-level logics are:
1. break input tensor to tensor blocks
2. pair the blocks with 50% next sentence and 50% random sentence
3. return paired blocks as well as related segment labels
Args:
dataset (~torch.utils.data.Dataset): dataset to break into blocks
sizes: array of sentence lengths
dictionary: dictionary for the task
block_size: maximum block size
break_mode: mode for breaking copurs into block pairs. currently we support
2 modes
doc: respect document boundaries and each part of the pair should belong to on document
none: don't respect any boundary and cut tokens evenly
short_seq_prob: probability for generating shorter block pairs
doc_break_size: Size for empty line separating documents. Typically 1 if
the sentences have eos, 0 otherwise.
"""
def __init__(
self,
dataset,
dictionary,
sizes,
block_size,
break_mode="doc",
short_seq_prob=0.1,
doc_break_size=1,
):
super().__init__()
self.dataset = dataset
self.pad = dictionary.pad()
self.eos = dictionary.eos()
self.cls = dictionary.cls()
self.mask = dictionary.mask()
self.sep = dictionary.sep()
self.break_mode = break_mode
self.dictionary = dictionary
self.short_seq_prob = short_seq_prob
self.block_indices = []
assert len(dataset) == len(sizes)
if break_mode == "doc":
cur_doc = []
for sent_id, sz in enumerate(sizes):
assert doc_break_size == 0 or sz != 0, (
"when doc_break_size is non-zero, we expect documents to be"
"separated by a blank line with a single eos."
)
# empty line as document separator
if sz == doc_break_size:
if len(cur_doc) == 0:
continue
self.block_indices.append(cur_doc)
cur_doc = []
else:
cur_doc.append(sent_id)
max_num_tokens = block_size - 3 # Account for [CLS], [SEP], [SEP]
self.sent_pairs = []
self.sizes = []
for doc_id, doc in enumerate(self.block_indices):
self._generate_sentence_pair(doc, doc_id, max_num_tokens, sizes)
elif break_mode is None or break_mode == "none":
# each block should have half of the block size since we are constructing block pair
sent_length = (block_size - 3) // 2
total_len = sum(dataset.sizes)
length = math.ceil(total_len / sent_length)
def block_at(i):
start = i * sent_length
end = min(start + sent_length, total_len)
return (start, end)
sent_indices = np.array([block_at(i) for i in range(length)])
sent_sizes = np.array([e - s for s, e in sent_indices])
dataset_index = self._sent_to_dataset_index(sent_sizes)
# pair sentences
self._pair_sentences(dataset_index)
else:
raise ValueError("Invalid break_mode: " + break_mode)
def _pair_sentences(self, dataset_index):
"""
Give a list of evenly cut blocks/sentences, pair these sentences with 50%
consecutive sentences and 50% random sentences.
This is used for none break mode
"""
# pair sentences
for sent_id, sent in enumerate(dataset_index):
next_sent_label = (
1 if np.random.rand() > 0.5 and sent_id != len(dataset_index) - 1 else 0
)
if next_sent_label:
next_sent = dataset_index[sent_id + 1]
else:
next_sent = dataset_index[
self._skip_sampling(len(dataset_index), [sent_id, sent_id + 1])
]
self.sent_pairs.append((sent, next_sent, next_sent_label))
# The current blocks don't include the special tokens but the
# sizes already account for this
self.sizes.append(3 + sent[3] + next_sent[3])
def _sent_to_dataset_index(self, sent_sizes):
"""
Build index mapping block indices to the underlying dataset indices
"""
dataset_index = []
ds_idx, ds_remaining = -1, 0
for to_consume in sent_sizes:
sent_size = to_consume
if ds_remaining == 0:
ds_idx += 1
ds_remaining = sent_sizes[ds_idx]
start_ds_idx = ds_idx
start_offset = sent_sizes[ds_idx] - ds_remaining
while to_consume > ds_remaining:
to_consume -= ds_remaining
ds_idx += 1
ds_remaining = sent_sizes[ds_idx]
ds_remaining -= to_consume
dataset_index.append(
(
start_ds_idx, # starting index in dataset
start_offset, # starting offset within starting index
ds_idx, # ending index in dataset
sent_size, # sentence length
)
)
assert ds_remaining == 0
assert ds_idx == len(self.dataset) - 1
return dataset_index
def _generate_sentence_pair(self, doc, doc_id, max_num_tokens, sizes):
"""
Go through a single document and genrate sentence paris from it
"""
current_chunk = []
current_length = 0
curr = 0
# To provide more randomness, we decrease target seq length for parts of
# samples (10% by default). Note that max_num_tokens is the hard threshold
# for batching and will never be changed.
target_seq_length = max_num_tokens
if np.random.random() < self.short_seq_prob:
target_seq_length = np.random.randint(2, max_num_tokens)
# loop through all sentences in document
while curr < len(doc):
sent_id = doc[curr]
current_chunk.append(sent_id)
current_length = sum(sizes[current_chunk])
# split chunk and generate pair when exceed target_seq_length or
# finish the loop
if curr == len(doc) - 1 or current_length >= target_seq_length:
# split the chunk into 2 parts
a_end = 1
if len(current_chunk) > 2:
a_end = np.random.randint(1, len(current_chunk) - 1)
sent_a = current_chunk[:a_end]
len_a = sum(sizes[sent_a])
# generate next sentence label, note that if there is only 1 sentence
# in current chunk, label is always 0
next_sent_label = (
1 if np.random.rand() > 0.5 and len(current_chunk) != 1 else 0
)
if not next_sent_label:
# if next sentence label is 0, sample sent_b from a random doc
target_b_length = target_seq_length - len_a
rand_doc_id = self._skip_sampling(len(self.block_indices), [doc_id])
random_doc = self.block_indices[rand_doc_id]
random_start = np.random.randint(0, len(random_doc))
sent_b = []
len_b = 0
for j in range(random_start, len(random_doc)):
sent_b.append(random_doc[j])
len_b = sum(sizes[sent_b])
if len_b >= target_b_length:
break
# return the second part of the chunk since it's not used
num_unused_segments = len(current_chunk) - a_end
curr -= num_unused_segments
else:
# if next sentence label is 1, use the second part of chunk as sent_B
sent_b = current_chunk[a_end:]
len_b = sum(sizes[sent_b])
# currently sent_a and sent_B may be longer than max_num_tokens,
# truncate them and return block idx and offsets for them
sent_a, sent_b = self._truncate_sentences(
sent_a, sent_b, max_num_tokens
)
self.sent_pairs.append((sent_a, sent_b, next_sent_label))
self.sizes.append(3 + sent_a[3] + sent_b[3])
current_chunk = []
curr += 1
def _skip_sampling(self, total, skip_ids):
"""
Generate a random integer which is not in skip_ids. Sample range is [0, total)
TODO: ids in skip_ids should be consecutive, we can extend it to more generic version later
"""
rand_id = np.random.randint(total - len(skip_ids))
return rand_id if rand_id < min(skip_ids) else rand_id + len(skip_ids)
def _truncate_sentences(self, sent_a, sent_b, max_num_tokens):
"""
Trancate a pair of sentence to limit total length under max_num_tokens
Logics:
1. Truncate longer sentence
2. Tokens to be truncated could be at the beginning or the end of the sentnce
Returns:
Truncated sentences represented by dataset idx
"""
len_a, len_b = sum(self.dataset.sizes[sent_a]), sum(self.dataset.sizes[sent_b])
front_cut_a = front_cut_b = end_cut_a = end_cut_b = 0
while True:
total_length = (
len_a + len_b - front_cut_a - front_cut_b - end_cut_a - end_cut_b
)
if total_length <= max_num_tokens:
break
if len_a - front_cut_a - end_cut_a > len_b - front_cut_b - end_cut_b:
if np.random.rand() < 0.5:
front_cut_a += 1
else:
end_cut_a += 1
else:
if np.random.rand() < 0.5:
front_cut_b += 1
else:
end_cut_b += 1
# calculate ds indices as well as offsets and return
truncated_sent_a = self._cut_sentence(sent_a, front_cut_a, end_cut_a)
truncated_sent_b = self._cut_sentence(sent_b, front_cut_b, end_cut_b)
return truncated_sent_a, truncated_sent_b
def _cut_sentence(self, sent, front_cut, end_cut):
"""
Cut a sentence based on the numbers of tokens to be cut from beginning and end
Represent the sentence as dataset idx and return
"""
start_ds_idx, end_ds_idx, offset = sent[0], sent[-1], 0
target_len = sum(self.dataset.sizes[sent]) - front_cut - end_cut
while front_cut > 0:
if self.dataset.sizes[start_ds_idx] > front_cut:
offset += front_cut
break
else:
front_cut -= self.dataset.sizes[start_ds_idx]
start_ds_idx += 1
while end_cut > 0:
if self.dataset.sizes[end_ds_idx] > end_cut:
break
else:
end_cut -= self.dataset.sizes[end_ds_idx]
end_ds_idx -= 1
return start_ds_idx, offset, end_ds_idx, target_len
def _fetch_block(self, start_ds_idx, offset, end_ds_idx, length):
"""
Fetch a block of tokens based on its dataset idx
"""
buffer = torch.cat(
[self.dataset[idx] for idx in range(start_ds_idx, end_ds_idx + 1)]
)
s, e = offset, offset + length
return buffer[s:e]
def __getitem__(self, index):
block1, block2, next_sent_label = self.sent_pairs[index]
block1 = self._fetch_block(*block1)
block2 = self._fetch_block(*block2)
return block1, block2, next_sent_label
def __len__(self):
return len(self.sizes)
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
prefetch_idx = set()
for index in indices:
for block1, block2, _ in [self.sent_pairs[index]]:
for ds_idx in range(block1[0], block1[2] + 1):
prefetch_idx.add(ds_idx)
for ds_idx in range(block2[0], block2[2] + 1):
prefetch_idx.add(ds_idx)
self.dataset.prefetch(prefetch_idx)
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
from typing import Dict, List, Tuple
import numpy as np
import torch
from fairseq.data import Dictionary, FairseqDataset, data_utils
from fairseq.data.concat_dataset import ConcatDataset
from fairseq.data.legacy.block_pair_dataset import BlockPairDataset
from fairseq.data.token_block_dataset import TokenBlockDataset
class MaskedLMDataset(FairseqDataset):
"""
A wrapper Dataset for masked language modelling. The dataset
wraps around TokenBlockDataset or BlockedPairDataset and creates a batch
where the input blocks are masked according to the specified masking
probability. Additionally the batch can also contain sentence level targets
if this is specified.
Args:
dataset: Dataset which generates blocks of data. Only BlockPairDataset
and TokenBlockDataset are supported.
sizes: Sentence lengths
vocab: Dictionary with the vocabulary and special tokens.
pad_idx: Id of padding token in dictionary
mask_idx: Id of mask token in dictionary
classif_token_idx: Id of classification token in dictionary. This is the
token associated with the sentence embedding (Eg: CLS for BERT)
sep_token_idx: Id of separator token in dictionary
(Eg: SEP in BERT)
seed: Seed for random number generator for reproducibility.
shuffle: Shuffle the elements before batching.
has_pairs: Specifies whether the underlying dataset
generates a pair of blocks along with a sentence_target or not.
Setting it to True assumes that the underlying dataset generates a
label for the pair of sentences which is surfaced as
sentence_target. The default value assumes a single block with no
sentence target.
segment_id: An optional segment id for filling in the segment labels
when we are in the single block setting (Eg: XLM). Default is 0.
masking_ratio: specifies what percentage of the blocks should be masked.
masking_prob: specifies the probability of a given token being
replaced with the "MASK" token.
random_token_prob: specifies the probability of a given token being
replaced by a random token from the vocabulary.
"""
def __init__(
self,
dataset: FairseqDataset,
sizes: np.ndarray,
vocab: Dictionary,
pad_idx: int,
mask_idx: int,
classif_token_idx: int,
sep_token_idx: int,
seed: int = 1,
shuffle: bool = True,
has_pairs: bool = True,
segment_id: int = 0,
masking_ratio: float = 0.15,
masking_prob: float = 0.8,
random_token_prob: float = 0.1,
):
# Make sure the input datasets are the ones supported
assert (
isinstance(dataset, TokenBlockDataset)
or isinstance(dataset, BlockPairDataset)
or isinstance(dataset, ConcatDataset)
), (
"MaskedLMDataset only wraps TokenBlockDataset or BlockPairDataset or "
"ConcatDataset"
)
self.dataset = dataset
self.sizes = np.array(sizes)
self.vocab = vocab
self.pad_idx = pad_idx
self.mask_idx = mask_idx
self.classif_token_idx = classif_token_idx
self.sep_token_idx = sep_token_idx
self.shuffle = shuffle
self.seed = seed
self.has_pairs = has_pairs
self.segment_id = segment_id
self.masking_ratio = masking_ratio
self.masking_prob = masking_prob
self.random_token_prob = random_token_prob
# If we have only one block then sizes needs to be updated to include
# the classification token
if not has_pairs:
self.sizes = self.sizes + 1
def __getitem__(self, index: int):
# if has_pairs, then expect 2 blocks and a sentence target
if self.has_pairs:
(block_one, block_two, sentence_target) = self.dataset[index]
else:
block_one = self.dataset[index]
return {
"id": index,
"block_one": block_one,
"block_two": block_two if self.has_pairs else None,
"sentence_target": sentence_target if self.has_pairs else None,
}
def __len__(self):
return len(self.dataset)
def _mask_block(
self,
sentence: np.ndarray,
mask_idx: int,
pad_idx: int,
dictionary_token_range: Tuple,
):
"""
Mask tokens for Masked Language Model training
Samples mask_ratio tokens that will be predicted by LM.
Note:This function may not be efficient enough since we had multiple
conversions between np and torch, we can replace them with torch
operators later.
Args:
sentence: 1d tensor to be masked
mask_idx: index to use for masking the sentence
pad_idx: index to use for masking the target for tokens we aren't
predicting
dictionary_token_range: range of indices in dictionary which can
be used for random word replacement
(e.g. without special characters)
Return:
masked_sent: masked sentence
target: target with words which we are not predicting replaced
by pad_idx
"""
masked_sent = np.copy(sentence)
sent_length = len(sentence)
mask_num = math.ceil(sent_length * self.masking_ratio)
mask = np.random.choice(sent_length, mask_num, replace=False)
target = np.copy(sentence)
for i in range(sent_length):
if i in mask:
rand = np.random.random()
# replace with mask if probability is less than masking_prob
# (Eg: 0.8)
if rand < self.masking_prob:
masked_sent[i] = mask_idx
# replace with random token if probability is less than
# masking_prob + random_token_prob (Eg: 0.9)
elif rand < (self.masking_prob + self.random_token_prob):
# sample random token from dictionary
masked_sent[i] = np.random.randint(
dictionary_token_range[0], dictionary_token_range[1]
)
else:
target[i] = pad_idx
return masked_sent, target
def _collate(self, samples: List[Dict], pad_idx: int, eos_idx: int):
"""
Does the heavy lifting for creating a batch from the input list of
examples. The logic is as follows:
1. Mask the input blocks. In case has_pair is True then we have 2
blocks to mask.
2. Prepend the first masked block tensor with the special token
used as sentence embedding. Eg: CLS in BERT. This happens
irrespective of the value of has_pair.
3. If has_pair is True, then append the first masked block with the
special separator token (eg: SEP for BERT) and compute segment
label accordingly. In this case, also append the second masked
block with this special separator token and compute its segment
label.
4. For the targets tensor, prepend and append with padding index
accordingly.
5. Concatenate all tensors.
"""
if len(samples) == 0:
return {}
# To ensure determinism, we reset the state of the PRNG after every
# batch based on the seed and the first id of the batch. This ensures
# that across epochs we get the same mask for the same example. This
# is needed for reproducibility and is how BERT does masking
# TODO: Can we add deteminism without this constraint?
with data_utils.numpy_seed(self.seed + samples[0]["id"]):
for s in samples:
# token range is needed for replacing with random token during
# masking
token_range = (self.vocab.nspecial, len(self.vocab))
# mask according to specified probabilities.
masked_blk_one, masked_tgt_one = self._mask_block(
s["block_one"],
self.mask_idx,
self.pad_idx,
token_range,
)
tokens = np.concatenate([[self.classif_token_idx], masked_blk_one])
targets = np.concatenate([[self.pad_idx], masked_tgt_one])
segments = np.ones(len(tokens)) * self.segment_id
# if has_pairs is True then we need to add the SEP token to both
# the blocks after masking and re-compute segments based on the new
# lengths.
if self.has_pairs:
tokens_one = np.concatenate([tokens, [self.sep_token_idx]])
targets_one = np.concatenate([targets, [self.pad_idx]])
masked_blk_two, masked_tgt_two = self._mask_block(
s["block_two"], self.mask_idx, self.pad_idx, token_range
)
tokens_two = np.concatenate([masked_blk_two, [self.sep_token_idx]])
targets_two = np.concatenate([masked_tgt_two, [self.pad_idx]])
# block + 1 sep + 1 special (CLS)
segments_one = np.zeros(len(tokens_one))
# block + 1 sep
segments_two = np.ones(len(tokens_two))
tokens = np.concatenate([tokens_one, tokens_two])
targets = np.concatenate([targets_one, targets_two])
segments = np.concatenate([segments_one, segments_two])
s["source"] = torch.LongTensor(tokens)
s["segment_labels"] = torch.LongTensor(segments)
s["lm_target"] = torch.LongTensor(targets)
def merge(key):
return data_utils.collate_tokens(
[s[key] for s in samples], pad_idx, eos_idx, left_pad=False
)
return {
"id": torch.LongTensor([s["id"] for s in samples]),
"ntokens": sum(len(s["source"]) for s in samples),
"net_input": {
"src_tokens": merge("source"),
"segment_labels": merge("segment_labels"),
},
"lm_target": merge("lm_target"),
"sentence_target": torch.LongTensor([s["sentence_target"] for s in samples])
if self.has_pairs
else None,
"nsentences": len(samples),
}
def collater(self, samples: List[Dict]):
"""Merge a list of samples to form a mini-batch.
Args:
samples (List[dict]): samples to collate
Returns:
dict: a mini-batch of data
"""
return self._collate(samples, self.vocab.pad(), self.vocab.eos())
def num_tokens(self, index: int):
"""
Return the number of tokens in a sample. This value is used to
enforce max-tokens during batching.
"""
return self.sizes[index]
def size(self, index: int):
"""
Return an example's size as a float or tuple. This value is used when
filtering a dataset with max-positions.
"""
return self.sizes[index]
def ordered_indices(self):
"""
Return an ordered list of indices. Batches will be constructed based
on this order.
"""
if self.shuffle:
return np.random.permutation(len(self))
else:
order = [np.arange(len(self))]
order.append(self.sizes)
return np.lexsort(order)
@property
def supports_prefetch(self):
return getattr(self.dataset, "supports_prefetch", False)
def prefetch(self, indices):
self.dataset.prefetch(indices)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment