Commit 6e2bd794 authored by Alexei Baevski's avatar Alexei Baevski Committed by Facebook Github Bot
Browse files

wav2vec everstore support

Summary: changes for internal support

Differential Revision: D16646887

fbshipit-source-id: ac5bf6c32901819726249422324eae32a0a6e148
parent d4c9136c
......@@ -9,7 +9,7 @@ from .fairseq_dataset import FairseqDataset
from .base_wrapper_dataset import BaseWrapperDataset
from .audio.raw_audio_dataset import RawAudioDataset
from .audio.raw_audio_dataset import FileAudioDataset
from .backtranslation_dataset import BacktranslationDataset
from .concat_dataset import ConcatDataset
from .concat_sentences_dataset import ConcatSentencesDataset
......@@ -78,9 +78,9 @@ __all__ = [
'PadDataset',
'PrependDataset',
'PrependTokenDataset',
'RawAudioDataset',
'RawLabelDataset',
'ReplaceDataset',
'FileAudioDataset',
"RawLabelDataset",
'RightPadDataset',
'RoundRobinZipDatasets',
'ShardedDataset',
......
......@@ -7,6 +7,7 @@
import os
import numpy as np
import sys
import torch
import torch.nn.functional as F
......@@ -14,61 +15,71 @@ from .. import FairseqDataset
class RawAudioDataset(FairseqDataset):
def __init__(self, manifest_path, sample_rate, max_sample_size=None, min_sample_size=None,
shuffle=True):
def __init__(
self,
sample_rate,
max_sample_size=None,
min_sample_size=None,
shuffle=True,
min_length=0,
):
super().__init__()
self.sample_rate = sample_rate
self.fnames = []
self.sizes = []
self.max_sample_size = max_sample_size if max_sample_size is not None else sys.maxsize
self.min_sample_size = min_sample_size if min_sample_size is not None else self.max_sample_size
with open(manifest_path, 'r') as f:
self.root_dir = f.readline().strip()
for line in f:
items = line.strip().split('\t')
assert len(items) == 2, line
self.fnames.append(items[0])
self.sizes.append(int(items[1]))
self.max_sample_size = (
max_sample_size if max_sample_size is not None else sys.maxsize
)
self.min_sample_size = (
min_sample_size if min_sample_size is not None else self.max_sample_size
)
self.min_length = min_length
self.shuffle = shuffle
def __getitem__(self, index):
fname = os.path.join(self.root_dir, self.fnames[index])
import soundfile as sf
raise NotImplementedError()
wav, curr_sample_rate = sf.read(fname)
feats = torch.from_numpy(wav).float()
def __len__(self):
return len(self.sizes)
def postprocess(self, feats, curr_sample_rate):
def resample(x, factor):
return F.interpolate(x.view(1, 1, -1), scale_factor=factor).squeeze()
if feats.dim() == 2:
feats = feats.mean(-1)
if curr_sample_rate != self.sample_rate:
factor = self.sample_rate / curr_sample_rate
feats = self.resample(feats, factor)
feats = resample(feats, factor)
assert feats.dim() == 1, feats.dim()
return feats
return {
'id': index,
'source': feats,
}
def crop_to_max_size(self, wav, target_size):
size = len(wav)
diff = size - target_size
if diff <= 0:
return wav
def resample(self, x, factor):
return F.interpolate(x.view(1, 1, -1), scale_factor=factor).squeeze()
def __len__(self):
return len(self.fnames)
start = np.random.randint(0, diff + 1)
end = size - diff + start
return wav[start:end]
def collater(self, samples):
samples = [
s for s in samples if s["source"] is not None and len(s["source"]) > 0
]
if len(samples) == 0:
return {}
sources = [s['source'] for s in samples]
sources = [s["source"] for s in samples]
sizes = [len(s) for s in sources]
target_size = min(min(sizes), self.max_sample_size)
if target_size < self.min_length:
return {}
if self.min_sample_size < target_size:
target_size = np.random.randint(self.min_sample_size, target_size + 1)
......@@ -79,32 +90,13 @@ class RawAudioDataset(FairseqDataset):
if diff == 0:
collated_sources[i] = source
else:
start = np.random.randint(0, diff + 1)
end = size - diff + start
collated_sources[i] = source[start:end]
collated_sources[i] = self.crop_to_max_size(source, target_size)
return {
'id': torch.LongTensor([s['id'] for s in samples]),
'net_input': {
'source': collated_sources,
},
"id": torch.LongTensor([s["id"] for s in samples]),
"net_input": {"source": collated_sources},
}
def get_dummy_batch(
self, num_tokens, max_positions, src_len=2048, tgt_len=128,
):
"""Return a dummy batch with a given number of tokens."""
if isinstance(max_positions, float) or isinstance(max_positions, int):
src_len = min(src_len, max_positions)
bsz = num_tokens // src_len
return self.collater([
{
'id': i,
'source': torch.rand(src_len),
}
for i in range(bsz)
])
def num_tokens(self, index):
return self.size(index)
......@@ -124,3 +116,41 @@ class RawAudioDataset(FairseqDataset):
order.append(self.sizes)
return np.lexsort(order)
class FileAudioDataset(RawAudioDataset):
def __init__(
self,
manifest_path,
sample_rate,
max_sample_size=None,
min_sample_size=None,
shuffle=True,
min_length=0,
):
super().__init__(
sample_rate=sample_rate,
max_sample_size=max_sample_size,
min_sample_size=min_sample_size,
shuffle=shuffle,
min_length=min_length,
)
self.fnames = []
with open(manifest_path, "r") as f:
self.root_dir = f.readline().strip()
for line in f:
items = line.strip().split("\t")
assert len(items) == 2, line
self.fnames.append(items[0])
self.sizes.append(int(items[1]))
def __getitem__(self, index):
import soundfile as sf
fname = os.path.join(self.root_dir, self.fnames[index])
wav, curr_sample_rate = sf.read(fname)
feats = torch.from_numpy(wav).float()
feats = self.postprocess(feats, curr_sample_rate)
return {"id": index, "source": feats}
......@@ -5,7 +5,7 @@
import os
from fairseq.data import RawAudioDataset
from fairseq.data import FileAudioDataset
from . import FairseqTask, register_task
......@@ -46,10 +46,10 @@ class AudioPretrainingTask(FairseqTask):
"""
manifest = os.path.join(self.args.data, '{}.tsv'.format(split))
self.datasets[split] = RawAudioDataset(manifest,
sample_rate=self.args.sample_rate,
max_sample_size=self.args.max_sample_size,
min_sample_size=self.args.min_sample_size)
self.datasets[split] = FileAudioDataset(manifest,
sample_rate=self.args.sample_rate,
max_sample_size=self.args.max_sample_size,
min_sample_size=self.args.min_sample_size)
@property
def target_dictionary(self):
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment