-
Myle Ott authored
Summary: Possibly breaking changes: - Set global numpy seed (4a7cd582) - Split `in_proj_weight` into separate k, v, q projections in MultiheadAttention (fdf4c3e9) - TransformerEncoder returns namedtuples instead of dict (27568a7e) New features: - Add `--fast-stat-sync` option (e1ba32aa) - Add `--empty-cache-freq` option (315c463d) - Support criterions with parameters (ba5f829f) New papers: - Simple and Effective Noisy Channel Modeling for Neural Machine Translation (49177c99) - Levenshtein Transformer (86857a58, ...) - Cross+Self-Attention for Transformer Models (4ac2c5f2) - Jointly Learning to Align and Translate with Transformer Models (1c667929) - Reducing Transformer Depth on Demand with Structured Dropout (dabbef46) - Unsupervised Cross-lingual Representation Learning at Scale (XLM-RoBERTa) (e23e5eaa) - BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension (a92bcdad) - CamemBERT: a French BERT (b31849aa) Speed improvements: - Add CUDA kernels for LightConv and DynamicConv (f840564d) - Cythonization of various dataloading components (4fc39538, ...) - Don't project mask tokens for MLM training (718677eb) Pull Request resolved: https://github.com/pytorch/fairseq/pull/1452 Differential Revision: D18798409 Pulled By: myleott fbshipit-source-id: 860a0d5aaf7377c8c9bd63cdb3b33d464f0e1727
df2f84ce