• Myle Ott's avatar
    v0.8.0 -> v0.9.0 (#1452) · df2f84ce
    Myle Ott authored
    Summary:
    Possibly breaking changes:
    - Set global numpy seed (4a7cd582)
    - Split `in_proj_weight` into separate k, v, q projections in MultiheadAttention (fdf4c3e9)
    - TransformerEncoder returns namedtuples instead of dict (27568a7e)
    
    New features:
    - Add `--fast-stat-sync` option (e1ba32aa)
    - Add `--empty-cache-freq` option (315c463d)
    - Support criterions with parameters (ba5f829f)
    
    New papers:
    - Simple and Effective Noisy Channel Modeling for Neural Machine Translation (49177c99)
    - Levenshtein Transformer (86857a58, ...)
    - Cross+Self-Attention for Transformer Models (4ac2c5f2)
    - Jointly Learning to Align and Translate with Transformer Models (1c667929)
    - Reducing Transformer Depth on Demand with Structured Dropout (dabbef46)
    - Unsupervised Cross-lingual Representation Learning at Scale (XLM-RoBERTa) (e23e5eaa)
    - BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension (a92bcdad)
    - CamemBERT: a French BERT (b31849aa)
    
    Speed improvements:
    - Add CUDA kernels for LightConv and DynamicConv (f840564d)
    - Cythonization of various dataloading components (4fc39538, ...)
    - Don't project mask tokens for MLM training (718677eb)
    Pull Request resolved: https://github.com/pytorch/fairseq/pull/1452
    
    Differential Revision: D18798409
    
    Pulled By: myleott
    
    fbshipit-source-id: 860a0d5aaf7377c8c9bd63cdb3b33d464f0e1727
    df2f84ce
conf.py 4.14 KB