wsc_criterion.py 4.85 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math

import torch
import torch.nn.functional as F

from fairseq import utils
from fairseq.data import encoders
from fairseq.criterions import FairseqCriterion, register_criterion


@register_criterion('wsc')
class WSCCriterion(FairseqCriterion):

    def __init__(self, args, task):
        super().__init__(args, task)
        if self.args.save_predictions is not None:
            self.prediction_h = open(self.args.save_predictions, 'w')
        else:
            self.prediction_h = None
        self.bpe = encoders.build_bpe(args)
        self.tokenizer = encoders.build_tokenizer(args)

    def __del__(self):
        if self.prediction_h is not None:
            self.prediction_h.close()

    @staticmethod
    def add_args(parser):
        """Add criterion-specific arguments to the parser."""
        parser.add_argument('--wsc-margin-alpha', type=float, metavar='A', default=1.0)
        parser.add_argument('--wsc-margin-beta', type=float, metavar='B', default=0.0)
        parser.add_argument('--wsc-cross-entropy', action='store_true',
                            help='use cross entropy formulation instead of margin loss')
        parser.add_argument('--save-predictions', metavar='FILE',
                            help='file to save predictions to')

    def forward(self, model, sample, reduce=True):

        def get_masked_input(tokens, mask):
            masked_tokens = tokens.clone()
            masked_tokens[mask] = self.task.mask
            return masked_tokens

        def get_lprobs(tokens, mask):
            logits, _ = model(src_tokens=get_masked_input(tokens, mask))
            lprobs = F.log_softmax(logits, dim=-1, dtype=torch.float)
            scores = lprobs.gather(2, tokens.unsqueeze(-1)).squeeze(-1)
            mask = mask.type_as(scores)
            scores = (scores * mask).sum(dim=-1) / mask.sum(dim=-1)
            return scores

        # compute loss and accuracy
        loss, nloss = 0., 0
        ncorrect, nqueries = 0, 0
        for i, label in enumerate(sample['labels']):
            query_lprobs = get_lprobs(
                sample['query_tokens'][i].unsqueeze(0),
                sample['query_masks'][i].unsqueeze(0),
            )
            cand_lprobs = get_lprobs(
                sample['candidate_tokens'][i],
                sample['candidate_masks'][i],
            )

            pred = (query_lprobs >= cand_lprobs).all().item()

            if label is not None:
                label = 1 if label else 0
                ncorrect += 1 if pred == label else 0
                nqueries += 1

            if label:
                # only compute a loss for positive instances
                nloss += 1
                if self.args.wsc_cross_entropy:
                    loss += F.cross_entropy(
                        torch.cat([query_lprobs, cand_lprobs]).unsqueeze(0),
                        query_lprobs.new([0]).long(),
                    )
                else:
                    loss += (
                        - query_lprobs
                        + self.args.wsc_margin_alpha * (
                            cand_lprobs - query_lprobs + self.args.wsc_margin_beta
                        ).clamp(min=0)
                    ).sum()

            id = sample['id'][i].item()
            if self.prediction_h is not None:
                print('{}\t{}\t{}'.format(id, pred, label), file=self.prediction_h)

        if nloss == 0:
            loss = torch.tensor(0.0, requires_grad=True)

        sample_size = nqueries if nqueries > 0 else 1
        logging_output = {
            'loss': utils.item(loss.data) if reduce else loss.data,
            'ntokens': sample['ntokens'],
            'nsentences': sample['nsentences'],
            'sample_size': sample_size,
            'ncorrect': ncorrect,
            'nqueries': nqueries,
        }
        return loss, sample_size, logging_output

    @staticmethod
    def aggregate_logging_outputs(logging_outputs):
        """Aggregate logging outputs from data parallel training."""
        loss_sum = sum(log.get('loss', 0) for log in logging_outputs)
        ntokens = sum(log.get('ntokens', 0) for log in logging_outputs)
        nsentences = sum(log.get('nsentences', 0) for log in logging_outputs)
        sample_size = sum(log.get('sample_size', 0) for log in logging_outputs)

        agg_output = {
            'loss': loss_sum / sample_size / math.log(2),
            'ntokens': ntokens,
            'nsentences': nsentences,
            'sample_size': sample_size,
        }

        ncorrect = sum(log.get('ncorrect', 0) for log in logging_outputs)
        nqueries = sum(log.get('nqueries', 0) for log in logging_outputs)
        if nqueries > 0:
            agg_output['accuracy'] = ncorrect / float(nqueries)

        return agg_output