score_moe.py 5.84 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#!/usr/bin/env python3
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
"""
Scoring script for computing pairwise BLEU and oracle BLEU over a set of
candidate hypotheses.

See `"Mixture Models for Diverse Machine Translation: Tricks of the Trade"
(Shen et al., 2019) <https://arxiv.org/abs/1902.07816>`_.
"""

import argparse
Myle Ott's avatar
Myle Ott committed
17
from itertools import chain
18
19
20
21
import sys
import numpy as np
import random

Myle Ott's avatar
Myle Ott committed
22
from sacrebleu import compute_bleu, corpus_bleu as _corpus_bleu
23
24


Myle Ott's avatar
Myle Ott committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def main():
    parser = argparse.ArgumentParser(sys.argv[0])
    parser.add_argument('--sys', nargs='*', default='', metavar='FILE',
                        help='path to system output')
    parser.add_argument('--ref', default='', metavar='FILE',
                        help='path to references')
    parser.add_argument('--output', default='', metavar='FILE',
                        help='print outputs into a pretty format')
    args = parser.parse_args()

    if args.sys:
        src, tgt, hypos, log_probs = load_sys(args.sys)
        print('pairwise BLEU: %.2f' % pairwise(hypos))
        if args.output:
            merge(src, tgt, hypos, log_probs, args.output)
    if args.ref:
        _, _, refs = load_ref(args.ref)
        if args.sys:
            multi_ref(refs, hypos)
        else:
            intra_ref(refs)

47
48
49
50
51

def dictolist(d):
    a = sorted(d.items(), key=lambda i: i[0])
    return [i[1] for i in a]

Myle Ott's avatar
Myle Ott committed
52

53
54
55
56
57
def load_sys(paths):
    src, tgt, hypos, log_probs = {}, {}, {}, {}
    for path in paths:
        with open(path) as f:
            for line in f:
Myle Ott's avatar
Myle Ott committed
58
                line = line.rstrip()
59
60
61
62
63
64
65
66
67
68
69
70
71
72
                if line.startswith(('S-', 'T-', 'H-')):
                    i = int(line[line.find('-')+1:line.find('\t')])
                    if line.startswith('S-'):
                        src[i] = line.split('\t')[1]
                    if line.startswith('T-'):
                        tgt[i] = line.split('\t')[1]
                    if line.startswith('H-'):
                        if i not in hypos:
                            hypos[i] = []
                            log_probs[i] = []
                        hypos[i].append(line.split('\t')[2])
                        log_probs[i].append(float(line.split('\t')[1]))
    return dictolist(src), dictolist(tgt), dictolist(hypos), dictolist(log_probs)

Myle Ott's avatar
Myle Ott committed
73

74
75
76
77
78
79
80
def load_ref(path):
    with open(path) as f:
        lines = f.readlines()
    src, tgt, refs = [], [], []
    i = 0
    while i < len(lines):
        if lines[i].startswith('S-'):
Myle Ott's avatar
Myle Ott committed
81
            src.append(lines[i].split('\t')[1].rstrip())
82
83
            i += 1
        elif lines[i].startswith('T-'):
Myle Ott's avatar
Myle Ott committed
84
            tgt.append(lines[i].split('\t')[1].rstrip())
85
86
87
88
            i += 1
        else:
            a = []
            while i < len(lines) and lines[i].startswith('R'):
Myle Ott's avatar
Myle Ott committed
89
                a.append(lines[i].split('\t')[1].rstrip())
90
91
92
93
                i += 1
            refs.append(a)
    return src, tgt, refs

Myle Ott's avatar
Myle Ott committed
94

95
96
97
def merge(src, tgt, hypos, log_probs, path):
    with open(path, 'w') as f:
        for s, t, hs, lps in zip(src, tgt, hypos, log_probs):
Myle Ott's avatar
Myle Ott committed
98
99
            f.write(s + '\n')
            f.write(t + '\n')
100
101
            f.write('\n')
            for h, lp in zip(hs, lps):
Myle Ott's avatar
Myle Ott committed
102
                f.write('\t%f\t%s\n' % (lp, h.strip()))
103
104
            f.write('------------------------------------------------------\n')

Myle Ott's avatar
Myle Ott committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

def corpus_bleu(sys_stream, ref_streams):
    bleu = _corpus_bleu(sys_stream, ref_streams, tokenize='none')
    return bleu.score


def sentence_bleu(hypothesis, reference):
    bleu = _corpus_bleu(hypothesis, reference)
    for i in range(1, 4):
        bleu.counts[i] += 1
        bleu.totals[i] += 1
    bleu = compute_bleu(
        bleu.counts, bleu.totals,
        bleu.sys_len, bleu.ref_len,
        smooth='exp', smooth_floor=0.0,
    )
    return bleu.score

123
124
125
126
127
128
129
130
131

def pairwise(sents):
    _ref, _hypo = [], []
    for s in sents:
        for i in range(len(s)):
            for j in range(len(s)):
                if i != j:
                    _ref.append(s[i])
                    _hypo.append(s[j])
Myle Ott's avatar
Myle Ott committed
132
133
    return corpus_bleu(_hypo, [_ref])

134
135
136
137

def multi_ref(refs, hypos):
    _ref, _hypo = [], []
    ref_cnt = 0
Myle Ott's avatar
Myle Ott committed
138
139
140
    assert len(refs) == len(hypos)

    # count number of refs covered
141
142
143
    for rs, hs in zip(refs, hypos):
        a = set()
        for h in hs:
Myle Ott's avatar
Myle Ott committed
144
            s = [sentence_bleu(h, r) for r in rs]
145
146
147
148
149
150
151
152
            j = np.argmax(s)
            _ref.append(rs[j])
            _hypo.append(h)
            best = [k for k in range(len(rs)) if s[k] == s[j]]
            a.add(random.choice(best))
        ref_cnt += len(a)
    print('#refs covered: %.2f' % (ref_cnt / len(refs)))

Myle Ott's avatar
Myle Ott committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    # transpose refs and hypos
    refs = list(zip(*refs))
    hypos = list(zip(*hypos))

    # compute average corpus BLEU
    k = len(hypos)
    m = len(refs)
    concat_hypos = []
    concat_refs = [[] for j in range(m - 1)]
    for i in range(m):
        concat_hypos.append([h for hs in hypos for h in hs])
        rest = refs[:i] + refs[i+1:]
        for j in range(m - 1):
            concat_refs[j].extend(rest[j] * k)
    concat_hypos = list(chain.from_iterable(concat_hypos))
    bleu = corpus_bleu(concat_hypos, concat_refs)
    print('multi-reference BLEU (leave-one-out): %.2f' % bleu)


172
173
def intra_ref(refs):
    print('ref pairwise BLEU: %.2f' % pairwise(refs))
Myle Ott's avatar
Myle Ott committed
174
175
176
177
178
179
180
181
182
183
184
185
    refs = list(zip(*refs))
    m = len(refs)
    concat_h = []
    concat_rest = [[] for j in range(m - 1)]
    for i, h in enumerate(refs):
        rest = refs[:i] + refs[i+1:]
        concat_h.append(h)
        for j in range(m - 1):
            concat_rest[j].extend(rest[j])
    concat_h = list(chain.from_iterable(concat_h))
    bleu = corpus_bleu(concat_h, concat_rest)
    print('multi-reference BLEU (leave-one-out): %.2f' % bleu)
186
187


Myle Ott's avatar
Myle Ott committed
188
189
if __name__ == '__main__':
    main()