generate.py 6.83 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import torch

Myle Ott's avatar
Myle Ott committed
11
from fairseq import bleu, data, options, progress_bar, tasks, tokenizer, utils
Sergey Edunov's avatar
Sergey Edunov committed
12
13
from fairseq.meters import StopwatchMeter, TimeMeter
from fairseq.sequence_generator import SequenceGenerator
Myle Ott's avatar
Myle Ott committed
14
from fairseq.sequence_scorer import SequenceScorer
Sergey Edunov's avatar
Sergey Edunov committed
15
16


Myle Ott's avatar
Myle Ott committed
17
def main(args):
Myle Ott's avatar
Myle Ott committed
18
    assert args.path is not None, '--path required for generation!'
Myle Ott's avatar
Myle Ott committed
19
20
21
22
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
    assert args.replace_unk is None or args.raw_text, \
        '--replace-unk requires a raw text dataset (--raw-text)'
23
24
25

    if args.max_tokens is None and args.max_sentences is None:
        args.max_tokens = 12000
Sergey Edunov's avatar
Sergey Edunov committed
26
27
28
29
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

Myle Ott's avatar
Myle Ott committed
30
31
32
33
34
35
36
37
    # Load dataset splits
    task = tasks.setup_task(args)
    task.load_dataset(args.gen_subset)
    print('| {} {} {} examples'.format(args.data, args.gen_subset, len(task.dataset(args.gen_subset))))

    # Set dictionaries
    src_dict = task.source_dictionary
    tgt_dict = task.target_dictionary
38
39

    # Load ensemble
40
    print('| loading model(s) from {}'.format(args.path))
41
    models, _ = utils.load_ensemble_for_inference(args.path.split(':'), task, model_arg_overrides=eval(args.model_overrides))
Sergey Edunov's avatar
Sergey Edunov committed
42

43
    # Optimize ensemble for generation
Sergey Edunov's avatar
Sergey Edunov committed
44
    for model in models:
Myle Ott's avatar
Myle Ott committed
45
46
47
48
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
Myle Ott's avatar
Myle Ott committed
49
50
        if args.fp16:
            model.half()
51
52

    # Load alignment dictionary for unknown word replacement
Louis Martin's avatar
Louis Martin committed
53
54
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)
55

Myle Ott's avatar
Myle Ott committed
56
57
58
    # Load dataset (possibly sharded)
    itr = data.EpochBatchIterator(
        dataset=task.dataset(args.gen_subset),
59
60
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
61
62
63
64
65
66
        max_positions=models[0].max_positions(),
        ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
        required_batch_size_multiple=8,
        num_shards=args.num_shards,
        shard_id=args.shard_id,
    ).next_epoch_itr(shuffle=False)
Myle Ott's avatar
Myle Ott committed
67
68
69
70

    # Initialize generator
    gen_timer = StopwatchMeter()
    if args.score_reference:
Myle Ott's avatar
Myle Ott committed
71
        translator = SequenceScorer(models, task.target_dictionary)
Myle Ott's avatar
Myle Ott committed
72
73
    else:
        translator = SequenceGenerator(
Myle Ott's avatar
Myle Ott committed
74
75
76
77
            models, task.target_dictionary, beam_size=args.beam,
            stop_early=(not args.no_early_stop), normalize_scores=(not args.unnormalized),
            len_penalty=args.lenpen, unk_penalty=args.unkpen,
            sampling=args.sampling, sampling_topk=args.sampling_topk, minlen=args.min_len,
78
            sampling_temperature=args.sampling_temperature,
Myle Ott's avatar
Myle Ott committed
79
        )
80

Myle Ott's avatar
Myle Ott committed
81
82
83
84
    if use_cuda:
        translator.cuda()

    # Generate and compute BLEU score
Myle Ott's avatar
Myle Ott committed
85
    scorer = bleu.Scorer(tgt_dict.pad(), tgt_dict.eos(), tgt_dict.unk())
Louis Martin's avatar
Louis Martin committed
86
    num_sentences = 0
87
    has_target = True
Myle Ott's avatar
Myle Ott committed
88
89
90
91
92
93
    with progress_bar.build_progress_bar(args, itr) as t:
        if args.score_reference:
            translations = translator.score_batched_itr(t, cuda=use_cuda, timer=gen_timer)
        else:
            translations = translator.generate_batched_itr(
                t, maxlen_a=args.max_len_a, maxlen_b=args.max_len_b,
Myle Ott's avatar
Myle Ott committed
94
95
96
                cuda=use_cuda, timer=gen_timer, prefix_size=args.prefix_size,
            )

Louis Martin's avatar
Louis Martin committed
97
98
99
        wps_meter = TimeMeter()
        for sample_id, src_tokens, target_tokens, hypos in translations:
            # Process input and ground truth
100
101
            has_target = target_tokens is not None
            target_tokens = target_tokens.int().cpu() if has_target else None
Myle Ott's avatar
Nits  
Myle Ott committed
102

103
104
            # Either retrieve the original sentences or regenerate them from tokens.
            if align_dict is not None:
Myle Ott's avatar
Myle Ott committed
105
106
                src_str = task.dataset(args.gen_subset).src.get_original_text(sample_id)
                target_str = task.dataset(args.gen_subset).tgt.get_original_text(sample_id)
107
            else:
Myle Ott's avatar
Myle Ott committed
108
                src_str = src_dict.string(src_tokens, args.remove_bpe)
Myle Ott's avatar
Nits  
Myle Ott committed
109
                if has_target:
Myle Ott's avatar
Myle Ott committed
110
                    target_str = tgt_dict.string(target_tokens, args.remove_bpe, escape_unk=True)
111

Louis Martin's avatar
Louis Martin committed
112
113
            if not args.quiet:
                print('S-{}\t{}'.format(sample_id, src_str))
114
115
                if has_target:
                    print('T-{}\t{}'.format(sample_id, target_str))
Louis Martin's avatar
Louis Martin committed
116
117
118
119
120
121

            # Process top predictions
            for i, hypo in enumerate(hypos[:min(len(hypos), args.nbest)]):
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
122
                    alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
Louis Martin's avatar
Louis Martin committed
123
                    align_dict=align_dict,
Myle Ott's avatar
Myle Ott committed
124
                    tgt_dict=tgt_dict,
Myle Ott's avatar
Myle Ott committed
125
126
                    remove_bpe=args.remove_bpe,
                )
Louis Martin's avatar
Louis Martin committed
127
128
129

                if not args.quiet:
                    print('H-{}\t{}\t{}'.format(sample_id, hypo['score'], hypo_str))
Myle Ott's avatar
Myle Ott committed
130
131
132
133
134
135
136
                    print('P-{}\t{}'.format(
                        sample_id,
                        ' '.join(map(
                            lambda x: '{:.4f}'.format(x),
                            hypo['positional_scores'].tolist(),
                        ))
                    ))
137
138
139
140
141
142

                    if args.print_alignment:
                        print('A-{}\t{}'.format(
                            sample_id,
                            ' '.join(map(lambda x: str(utils.item(x)), alignment))
                        ))
Louis Martin's avatar
Louis Martin committed
143
144

                # Score only the top hypothesis
145
                if has_target and i == 0:
146
147
                    if align_dict is not None or args.remove_bpe is not None:
                        # Convert back to tokens for evaluation with unk replacement and/or without BPE
Myle Ott's avatar
Myle Ott committed
148
                        target_tokens = tokenizer.Tokenizer.tokenize(
Myle Ott's avatar
Myle Ott committed
149
                            target_str, tgt_dict, add_if_not_exist=True)
Louis Martin's avatar
Louis Martin committed
150
151
152
                    scorer.add(target_tokens, hypo_tokens)

            wps_meter.update(src_tokens.size(0))
153
            t.log({'wps': round(wps_meter.avg)})
Louis Martin's avatar
Louis Martin committed
154
155
            num_sentences += 1

156
    print('| Translated {} sentences ({} tokens) in {:.1f}s ({:.2f} sentences/s, {:.2f} tokens/s)'.format(
Myle Ott's avatar
Nits  
Myle Ott committed
157
        num_sentences, gen_timer.n, gen_timer.sum, num_sentences / gen_timer.sum, 1. / gen_timer.avg))
158
159
    if has_target:
        print('| Generate {} with beam={}: {}'.format(args.gen_subset, args.beam, scorer.result_string()))
Sergey Edunov's avatar
Sergey Edunov committed
160
161
162


if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
163
    parser = options.get_generation_parser()
164
    args = options.parse_args_and_arch(parser)
Myle Ott's avatar
Myle Ott committed
165
    main(args)