train.py 9.95 KB
Newer Older
Louis Martin's avatar
Louis Martin committed
1
#!/usr/bin/env python3
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
#

import collections
import os
import torch
import math

from fairseq import bleu, data, options, utils
from fairseq.meters import AverageMeter, StopwatchMeter, TimeMeter
from fairseq.multiprocessing_trainer import MultiprocessingTrainer
from fairseq.progress_bar import progress_bar
from fairseq.sequence_generator import SequenceGenerator


def main():
    parser = options.get_parser('Trainer')
    dataset_args = options.add_dataset_args(parser)
    dataset_args.add_argument('--max-tokens', default=6000, type=int, metavar='N',
                              help='maximum number of tokens in a batch')
    dataset_args.add_argument('--train-subset', default='train', metavar='SPLIT',
                              choices=['train', 'valid', 'test'],
                              help='data subset to use for training (train, valid, test)')
    dataset_args.add_argument('--valid-subset', default='valid', metavar='SPLIT',
                              help='comma separated list ofdata subsets '
                                   ' to use for validation (train, valid, valid1,test, test1)')
    options.add_optimization_args(parser)
    options.add_checkpoint_args(parser)
    options.add_model_args(parser)

37
    args = utils.parse_args_and_arch(parser)
Sergey Edunov's avatar
Sergey Edunov committed
38
39
40
41
42
43
44
45
46
47
48
    print(args)

    if args.no_progress_bar:
        progress_bar.enabled = False
        progress_bar.print_interval = args.log_interval

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    torch.manual_seed(args.seed)

    # Load dataset
49
    dataset = data.load_with_check(args.data, ['train', 'valid'], args.source_lang, args.target_lang)
Sergey Edunov's avatar
Sergey Edunov committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst

    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    for split in dataset.splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    num_gpus = torch.cuda.device_count()

    print('| using {} GPUs (with max tokens per GPU = {})'.format(num_gpus, args.max_tokens))

65
    # Build model and criterion
Sergey Edunov's avatar
Sergey Edunov committed
66
67
    model = utils.build_model(args, dataset)
    criterion = utils.build_criterion(args, dataset)
68
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Sergey Edunov's avatar
Sergey Edunov committed
69
70

    # Start multiprocessing
71
    trainer = MultiprocessingTrainer(args, model, criterion)
Sergey Edunov's avatar
Sergey Edunov committed
72
73

    # Load the latest checkpoint if one is available
74
75
76
77
78
79
80
81
82
83
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
        if batch_offset == 0:
            epoch += 1
    else:
        epoch, batch_offset = 1, 0
Sergey Edunov's avatar
Sergey Edunov committed
84
85
86
87
88
89
90
91
92

    # Train until the learning rate gets too small
    val_loss = None
    max_epoch = args.max_epoch or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
93
        train(args, epoch, batch_offset, trainer, dataset, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
94
95
96

        # evaluate on validate set
        for k, subset in enumerate(args.valid_subset.split(',')):
97
            val_loss = validate(args, epoch, trainer, dataset, subset, num_gpus)
Sergey Edunov's avatar
Sergey Edunov committed
98
99
100
            if k == 0:
                if not args.no_save:
                    # save checkpoint
101
                    save_checkpoint(trainer, args, epoch, 0, val_loss)
Sergey Edunov's avatar
Sergey Edunov committed
102
103
104
105
106
107
108
109
110
111
112
113
                # only use first validation loss to update the learning schedule
                lr = trainer.lr_step(val_loss, epoch)

        epoch += 1
        batch_offset = 0
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))

    # Stop multiprocessing
    trainer.stop()


114
def train(args, epoch, batch_offset, trainer, dataset, num_gpus):
Sergey Edunov's avatar
Sergey Edunov committed
115
116
117
118
119
    """Train the model for one epoch."""

    itr = dataset.dataloader(args.train_subset, num_workers=args.workers,
                             max_tokens=args.max_tokens, seed=args.seed, epoch=epoch,
                             max_positions=args.max_positions,
120
121
                             sample_without_replacement=args.sample_without_replacement,
                             skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
Sergey Edunov's avatar
Sergey Edunov committed
122
123
124
125
126
    loss_meter = AverageMeter()
    bsz_meter = AverageMeter()    # sentences per batch
    wpb_meter = AverageMeter()    # words per batch
    wps_meter = TimeMeter()       # words per second
    clip_meter = AverageMeter()   # % of updates clipped
Myle Ott's avatar
Myle Ott committed
127
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
128
129
130
131
132

    desc = '| epoch {:03d}'.format(epoch)
    lr = trainer.get_lr()
    with progress_bar(itr, desc, leave=False) as t:
        for i, sample in data.skip_group_enumerator(t, num_gpus, batch_offset):
Myle Ott's avatar
Myle Ott committed
133
134
135
            loss_dict = trainer.train_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix
Sergey Edunov's avatar
Sergey Edunov committed
136
137
138
139
140
141
142

            ntokens = sum(s['ntokens'] for s in sample)
            src_size = sum(s['src_tokens'].size(0) for s in sample)
            loss_meter.update(loss, ntokens)
            bsz_meter.update(src_size)
            wpb_meter.update(ntokens)
            wps_meter.update(ntokens)
Myle Ott's avatar
Myle Ott committed
143
144
145
146
147
148
            clip_meter.update(1 if loss_dict['gnorm'] > args.clip_norm else 0)

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))
Sergey Edunov's avatar
Sergey Edunov committed
149
150
151
152
153
154
155
156

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f} ({:.2f})'.format(loss, loss_meter.avg)),
                ('wps', '{:5d}'.format(round(wps_meter.avg))),
                ('wpb', '{:5d}'.format(round(wpb_meter.avg))),
                ('bsz', '{:5d}'.format(round(bsz_meter.avg))),
                ('lr', lr),
                ('clip', '{:3.0f}%'.format(clip_meter.avg * 100)),
Myle Ott's avatar
Myle Ott committed
157
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
158
159
160
161
162

            if i == 0:
                # ignore the first mini-batch in words-per-second calculation
                wps_meter.reset()
            if args.save_interval > 0 and (i + 1) % args.save_interval == 0:
163
                save_checkpoint(trainer, args, epoch, i + 1)
Sergey Edunov's avatar
Sergey Edunov committed
164

Myle Ott's avatar
Myle Ott committed
165
166
167
168
169
170
171
172
173
174
175
        fmt = desc + ' | train loss {:2.2f} | train ppl {:3.2f}'.format(
            loss_meter.avg, math.pow(2, loss_meter.avg))
        fmt += ' | s/checkpoint {:7d} | words/s {:6d} | words/batch {:6d}'.format(
            round(wps_meter.elapsed_time), round(wps_meter.avg), round(wpb_meter.avg))
        fmt += ' | bsz {:5d} | lr {:0.6f} | clip {:3.0f}%'.format(
            round(bsz_meter.avg), lr, clip_meter.avg * 100)
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
176
177


178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
def save_checkpoint(trainer, args, epoch, batch_offset, val_loss):
    extra_state = {
        'epoch': epoch,
        'batch_offset': batch_offset,
        'val_loss': val_loss,
    }

    if batch_offset == 0:
        if not args.no_epoch_checkpoints:
            epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
            trainer.save_checkpoint(epoch_filename, extra_state)

        assert val_loss is not None
        if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
            save_checkpoint.best = val_loss
            best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
            trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


200
def validate(args, epoch, trainer, dataset, subset, ngpus):
Sergey Edunov's avatar
Sergey Edunov committed
201
202
203
204
    """Evaluate the model on the validation set and return the average loss."""

    itr = dataset.dataloader(subset, batch_size=None,
                             max_tokens=args.max_tokens,
205
206
                             max_positions=args.max_positions,
                             skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test)
Sergey Edunov's avatar
Sergey Edunov committed
207
    loss_meter = AverageMeter()
Myle Ott's avatar
Myle Ott committed
208
    extra_meters = collections.defaultdict(lambda: AverageMeter())
Sergey Edunov's avatar
Sergey Edunov committed
209
210
211
212

    desc = '| epoch {:03d} | valid on \'{}\' subset'.format(epoch, subset)
    with progress_bar(itr, desc, leave=False) as t:
        for _, sample in data.skip_group_enumerator(t, ngpus):
Myle Ott's avatar
Myle Ott committed
213
214
215
216
            loss_dict = trainer.valid_step(sample)
            loss = loss_dict['loss']
            del loss_dict['loss']  # don't include in extra_meters or extra_postfix

Sergey Edunov's avatar
Sergey Edunov committed
217
218
            ntokens = sum(s['ntokens'] for s in sample)
            loss_meter.update(loss, ntokens)
Myle Ott's avatar
Myle Ott committed
219
220
221
222
223
224
225
226
227

            extra_postfix = []
            for k, v in loss_dict.items():
                extra_meters[k].update(v)
                extra_postfix.append((k, '{:.4f}'.format(extra_meters[k].avg)))

            t.set_postfix(collections.OrderedDict([
                ('loss', '{:.2f}'.format(loss_meter.avg)),
            ] + extra_postfix), refresh=False)
Sergey Edunov's avatar
Sergey Edunov committed
228
229

        val_loss = loss_meter.avg
Myle Ott's avatar
Myle Ott committed
230
231
232
233
234
235
236
        fmt = desc + ' | valid loss {:2.2f} | valid ppl {:3.2f}'.format(
            val_loss, math.pow(2, val_loss))
        fmt += ''.join(
            ' | {} {:.4f}'.format(k, meter.avg)
            for k, meter in extra_meters.items()
        )
        t.write(fmt)
Sergey Edunov's avatar
Sergey Edunov committed
237
238
239
240
241
242
243

    # update and return the learning rate
    return val_loss


if __name__ == '__main__':
    main()