generator.py 8.57 KB
Newer Older
Nathan Ng's avatar
Nathan Ng committed
1
2
3
4
5
6
7
8
9
10
11
#!/usr/bin/env python3 -u
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

from collections import namedtuple
import html
import os
12
13

import torch
Nathan Ng's avatar
Nathan Ng committed
14
15
16
from sacremoses import MosesTokenizer, MosesDetokenizer
from subword_nmt import apply_bpe

17
18
from fairseq import checkpoint_utils, options, tasks, utils
from fairseq.data import data_utils
Nathan Ng's avatar
Nathan Ng committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

Batch = namedtuple('Batch', 'ids src_tokens src_lengths')


class Generator(object):

    def __init__(self, task, models, args, src_bpe=None, bpe_symbol='@@ '):
        self.task = task
        self.models = models
        self.src_dict = task.source_dictionary
        self.tgt_dict = task.target_dictionary
        self.src_bpe = src_bpe
        self.use_cuda = torch.cuda.is_available() and not args.cpu
        self.args = args

        # optimize model for generation
        for model in self.models:
            model.make_generation_fast_(
                beamable_mm_beam_size=None if self.args.no_beamable_mm else self.args.beam,
                need_attn=args.print_alignment,
            )
            if args.fp16:
                model.half()
            if self.use_cuda:
                model.cuda()

        self.generator = self.task.build_generator(args)

        # Load alignment dictionary for unknown word replacement
        # (None if no unknown word replacement, empty if no path to align dictionary)
        self.align_dict = utils.load_align_dict(args.replace_unk)

        self.max_positions = utils.resolve_max_positions(
            self.task.max_positions(),
            *[model.max_positions() for model in models]
        )

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
        self.in_transforms = []
        self.out_transforms = []

        if getattr(args, 'moses', False):
            tokenizer = MosesTokenizer(lang=args.source_lang or 'en')
            detokenizer = MosesDetokenizer(lang=args.target_lang or 'en')
            self.in_transforms.append(lambda s: tokenizer.tokenize(s, return_str=True))
            self.out_transforms.append(lambda s: detokenizer.detokenize(s.split()))
        elif getattr(args, 'nltk', False):
            from nltk.tokenize import word_tokenize
            self.in_transforms.append(lambda s: ' '.join(word_tokenize(s)))

        if getattr(args, 'gpt2_bpe', False):
            from fairseq.gpt2_bpe.gpt2_encoding import get_encoder
            encoder_json = os.path.join(os.path.dirname(src_bpe), 'encoder.json')
            vocab_bpe = src_bpe
            encoder = get_encoder(encoder_json, vocab_bpe)
            self.in_transforms.append(lambda s: ' '.join(map(str, encoder.encode(s))))
            self.out_transforms.append(lambda s: ' '.join(t for t in s.split() if t != '<unk>'))
            self.out_transforms.append(lambda s: encoder.decode(map(int, s.strip().split())))
        elif getattr(args, 'sentencepiece', False):
            import sentencepiece as spm
            sp = spm.SentencePieceProcessor()
            sp.Load(src_bpe)
            self.in_transforms.append(lambda s: ' '.join(sp.EncodeAsPieces(s)))
            self.out_transforms.append(lambda s: data_utils.process_bpe_symbol(s, 'sentencepiece'))
        elif src_bpe is not None:
Nathan Ng's avatar
Nathan Ng committed
83
84
            bpe_parser = apply_bpe.create_parser()
            bpe_args = bpe_parser.parse_args(['--codes', self.src_bpe])
85
86
87
            bpe = apply_bpe.BPE(bpe_args.codes, bpe_args.merges, bpe_args.separator, None, bpe_args.glossaries)
            self.in_transforms.append(lambda s: bpe.process_line(s))
            self.out_transforms.append(lambda s: data_utils.process_bpe_symbol(s, bpe_symbol))
Nathan Ng's avatar
Nathan Ng committed
88
89
90

    def generate(self, src_str, verbose=False):

91
92
93
94
95
96
97
98
99
100
101
        def preprocess(s):
            for transform in self.in_transforms:
                s = transform(s)
            return s

        def postprocess(s):
            for transform in self.out_transforms:
                s = transform(s)
            return s

        src_str = preprocess(src_str)
Nathan Ng's avatar
Nathan Ng committed
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

        for batch in self.make_batches([src_str], self.args, self.task, self.max_positions):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            if self.use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translations = self.task.inference_step(self.generator, self.models, sample)
            src_tokens = utils.strip_pad(src_tokens, self.tgt_dict.pad())

        if self.src_dict is not None:
120
121
            src_str = self.src_dict.string(src_tokens)
            src_str = postprocess(src_str)
Nathan Ng's avatar
Nathan Ng committed
122
123
124
125
126
127
128
129
130
131
132
133
            if verbose:
                print('S\t{}'.format(src_str))

        # Process top predictions
        for hypo in translations[0][:min(len(translations), self.args.nbest)]:
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
                align_dict=self.align_dict,
                tgt_dict=self.tgt_dict,
            )
134
            hypo_str = postprocess(hypo_str)
Nathan Ng's avatar
Nathan Ng committed
135
136
137
138
139
140
141
142
143
144
145
146
147
            if verbose:
                print('H\t{}\t{}'.format(hypo['score'], hypo_str))
                print('P\t{}'.format(
                    ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist()))
                ))
                if self.args.print_alignment:
                    print('A\t{}'.format(
                        ' '.join(map(lambda x: str(utils.item(x)), alignment))
                    ))

        return html.unescape(hypo_str)

    @classmethod
148
149
150
    def from_pretrained(cls, parser, *args, model_name_or_path, data_name_or_path, checkpoint_file='model.pt', extra_task_args=None, **kwargs):
        from fairseq import file_utils

Nathan Ng's avatar
Nathan Ng committed
151
152
        model_path = file_utils.load_archive_file(model_name_or_path)
        data_path = file_utils.load_archive_file(data_name_or_path)
153
        checkpoint_path = os.path.join(model_path, checkpoint_file)
Nathan Ng's avatar
Nathan Ng committed
154
155
156
157

        task_name = kwargs.get('task', 'translation')

        # set data and parse
158
159
160
161
        model_args = options.parse_args_and_arch(
            parser,
            input_args=[data_path, '--task', task_name] + (extra_task_args or [])
        )
Nathan Ng's avatar
Nathan Ng committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

        # override any kwargs passed in
        if kwargs is not None:
            for arg_name, arg_val in kwargs.items():
                setattr(model_args, arg_name, arg_val)

        utils.import_user_module(args)

        if model_args.buffer_size < 1:
            model_args.buffer_size = 1
        if model_args.max_tokens is None and model_args.max_sentences is None:
            model_args.max_sentences = 1

        assert not model_args.sampling or model_args.nbest == model_args.beam, \
            '--sampling requires --nbest to be equal to --beam'
        assert not model_args.max_sentences or model_args.max_sentences <= model_args.buffer_size, \
            '--max-sentences/--batch-size cannot be larger than --buffer-size'

        print(model_args)

        task = tasks.setup_task(model_args)
        print("loading model checkpoint from {}".format(checkpoint_path))

185
186
187
188
189
190
191
192
193
194
195
196
        model, _model_args = checkpoint_utils.load_model_ensemble(
            [checkpoint_path],
            task=task,
            arg_overrides=kwargs,
        )

        src_bpe = None
        for bpe in ['bpecodes', 'vocab.bpe', 'sentencepiece.bpe.model']:
            path = os.path.join(model_path, bpe)
            if os.path.exists(path):
                src_bpe = path
                break
Nathan Ng's avatar
Nathan Ng committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

        return cls(task, model, model_args, src_bpe, kwargs.get('remove_bpe', '@@ '))

    def make_batches(self, lines, args, task, max_positions):
        tokens = [
            task.source_dictionary.encode_line(src_str, add_if_not_exist=False).long()
            for src_str in lines
        ]
        lengths = torch.LongTensor([t.numel() for t in tokens])
        itr = task.get_batch_iterator(
            dataset=task.build_dataset_for_inference(tokens, lengths),
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences,
            max_positions=max_positions,
        ).next_epoch_itr(shuffle=False)
        for batch in itr:
            yield Batch(
                ids=batch['id'],
                src_tokens=batch['net_input']['src_tokens'], src_lengths=batch['net_input']['src_lengths'],
            )