prepare-wmt14en2de.sh 3.72 KB
Newer Older
Sergey Edunov's avatar
Sergey Edunov committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#!/bin/bash
# Adapted from https://github.com/facebookresearch/MIXER/blob/master/prepareData.sh

echo 'Cloning Moses github repository (for tokenization scripts)...'
git clone https://github.com/moses-smt/mosesdecoder.git

echo 'Cloning Subword NMT repository (for BPE pre-processing)...'
git clone https://github.com/rsennrich/subword-nmt.git

SCRIPTS=mosesdecoder/scripts
TOKENIZER=$SCRIPTS/tokenizer/tokenizer.perl
CLEAN=$SCRIPTS/training/clean-corpus-n.perl
NORM_PUNC=$SCRIPTS/tokenizer/normalize-punctuation.perl
REM_NON_PRINT_CHAR=$SCRIPTS/tokenizer/remove-non-printing-char.perl
BPEROOT=subword-nmt
BPE_TOKENS=40000

URLS=(
    "http://statmt.org/wmt13/training-parallel-europarl-v7.tgz"
    "http://statmt.org/wmt13/training-parallel-commoncrawl.tgz"
Sergey Edunov's avatar
Sergey Edunov committed
21
    "http://data.statmt.org/wmt17/translation-task/training-parallel-nc-v12.tgz"
22
    "http://statmt.org/wmt14/test-full.tgz"
Sergey Edunov's avatar
Sergey Edunov committed
23
24
25
26
)
FILES=(
    "training-parallel-europarl-v7.tgz"
    "training-parallel-commoncrawl.tgz"
Sergey Edunov's avatar
Sergey Edunov committed
27
    "training-parallel-nc-v12.tgz"
28
    "test-full.tgz"
Sergey Edunov's avatar
Sergey Edunov committed
29
30
31
32
)
CORPORA=(
    "training/europarl-v7.de-en"
    "commoncrawl.de-en"
Sergey Edunov's avatar
Sergey Edunov committed
33
    "training/news-commentary-v12.de-en"
Sergey Edunov's avatar
Sergey Edunov committed
34
35
)

36
37
38
39
40
41
42
# This will make the dataset compatible to the one used in "Convolutional Sequence to Sequence Learning"
# https://arxiv.org/abs/1705.03122
if [ "$1" == "--icml17" ]; then
    URLS[2]="http://statmt.org/wmt14/training-parallel-nc-v9.tgz"
    FILES[2]="training-parallel-nc-v9.tgz"
    CORPORA[2]="training/news-commentary-v9.de-en"
fi
Sergey Edunov's avatar
Sergey Edunov committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

if [ ! -d "$SCRIPTS" ]; then
    echo "Please set SCRIPTS variable correctly to point to Moses scripts."
    exit
fi

src=en
tgt=de
lang=en-de
prep=wmt14_en_de
tmp=$prep/tmp
orig=orig

mkdir -p $orig $tmp $prep

cd $orig

for ((i=0;i<${#URLS[@]};++i)); do
    file=${FILES[i]}
    if [ -f $file ]; then
        echo "$file already exists, skipping download"
    else
        url=${URLS[i]}
        wget "$url"
        if [ -f $file ]; then
            echo "$url successfully downloaded."
        else
            echo "$url not successfully downloaded."
            exit -1
        fi
        if [ ${file: -4} == ".tgz" ]; then
            tar zxvf $file
        elif [ ${file: -4} == ".tar" ]; then
            tar xvf $file
        fi
    fi
done
cd ..

echo "pre-processing train data..."
for l in $src $tgt; do
    rm $tmp/train.tags.$lang.tok.$l
    for f in "${CORPORA[@]}"; do
        cat $orig/$f.$l | \
            perl $NORM_PUNC $l | \
            perl $REM_NON_PRINT_CHAR | \
            perl $TOKENIZER -threads 8 -a -l $l >> $tmp/train.tags.$lang.tok.$l
    done
done

echo "pre-processing test data..."
for l in $src $tgt; do
    if [ "$l" == "$src" ]; then
        t="src"
    else
        t="ref"
    fi
    grep '<seg id' $orig/test-full/newstest2014-deen-$t.$l.sgm | \
        sed -e 's/<seg id="[0-9]*">\s*//g' | \
        sed -e 's/\s*<\/seg>\s*//g' | \
        sed -e "s/\’/\'/g" | \
    perl $TOKENIZER -threads 8 -a -l $l > $tmp/test.$l
    echo ""
done

echo "splitting train and valid..."
for l in $src $tgt; do
    awk '{if (NR%100 == 0)  print $0; }' $tmp/train.tags.$lang.tok.$l > $tmp/valid.$l
    awk '{if (NR%100 != 0)  print $0; }' $tmp/train.tags.$lang.tok.$l > $tmp/train.$l
done

TRAIN=$tmp/train.de-en
BPE_CODE=$prep/code
rm -f $TRAIN
for l in $src $tgt; do
    cat $tmp/train.$l >> $TRAIN
done

echo "learn_bpe.py on ${TRAIN}..."
python $BPEROOT/learn_bpe.py -s $BPE_TOKENS < $TRAIN > $BPE_CODE

for L in $src $tgt; do
    for f in train.$L valid.$L test.$L; do
        echo "apply_bpe.py to ${f}..."
        python $BPEROOT/apply_bpe.py -c $BPE_CODE < $tmp/$f > $tmp/bpe.$f
    done
done

perl $CLEAN -ratio 1.5 $tmp/bpe.train $src $tgt $prep/train 1 250
perl $CLEAN -ratio 1.5 $tmp/bpe.valid $src $tgt $prep/valid 1 250

for L in $src $tgt; do
    cp $tmp/bpe.test.$L $prep/test.$L
done