singleprocess_train.py 10.9 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
#!/usr/bin/env python3 -u
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

import collections
import itertools
import os
import math
import torch

from fairseq import criterions, data, models, options, progress_bar
from fairseq.meters import AverageMeter, StopwatchMeter
from fairseq.trainer import Trainer


def main(args):
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Load dataset
    splits = ['train', 'valid']
    if data.has_binary_files(args.data, splits):
        dataset = data.load_dataset(
            args.data, splits, args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(
            args.data, splits, args.source_lang, args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    for split in splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    # Build model and criterion
    model = models.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = criterions.build_criterion(args, dataset.src_dict, dataset.dst_dict)
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
    print('| num. model params: {}'.format(sum(p.data.numel() for p in model.parameters())))

    # Build trainer
    trainer = Trainer(args, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Load the latest checkpoint if one is available
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    extra_state = trainer.load_checkpoint(checkpoint_path)
    if extra_state is not None:
        epoch = extra_state['epoch']
        batch_offset = extra_state['batch_offset']
        print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
        if batch_offset == 0:
            trainer.lr_step(epoch)
            epoch += 1
    else:
        epoch, batch_offset = 1, 0

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
Myle Ott's avatar
Myle Ott committed
74
    max_update = args.max_update or math.inf
Myle Ott's avatar
Myle Ott committed
75
76
77
78
79
80
81
82
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch:
        # train for one epoch
        train(args, trainer, dataset, epoch, batch_offset)

        # evaluate on validate set
Myle Ott's avatar
Myle Ott committed
83
84
85
86
87
88
89
90
91
92
93
94
        if epoch % args.validate_interval == 0:
            for k, subset in enumerate(args.valid_subset.split(',')):
                val_loss = validate(args, trainer, dataset, subset, epoch)
                if k == 0:
                    # only use first validation loss to update the learning schedule
                    lr = trainer.lr_step(epoch, val_loss)

                    # save checkpoint
                    if not args.no_save:
                        save_checkpoint(trainer, args, epoch, 0, val_loss)
        else:
            lr = trainer.lr_step(epoch)
Myle Ott's avatar
Myle Ott committed
95
96
97

        epoch += 1
        batch_offset = 0
Myle Ott's avatar
Myle Ott committed
98
99
100

        if trainer.get_num_updates() >= max_update:
            break
Myle Ott's avatar
Myle Ott committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    train_meter.stop()

    print('| done training in {:.1f} seconds'.format(train_meter.sum))


def train(args, trainer, dataset, epoch, batch_offset):
    """Train the model for one epoch."""

    # Set seed based on args.seed and the epoch number so that we get
    # reproducible results when resuming from checkpoints
    seed = args.seed + epoch
    torch.manual_seed(seed)

    # The max number of positions can be different for train and valid
    # e.g., RNNs may support more positions at test time than seen in training
    max_positions_train = (
        min(args.max_source_positions, trainer.get_model().max_encoder_positions()),
        min(args.max_target_positions, trainer.get_model().max_decoder_positions())
    )

    # Initialize dataloader, starting at batch_offset
    itr = dataset.train_dataloader(
        args.train_subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions_train,
        seed=seed,
        epoch=epoch,
        sample_without_replacement=args.sample_without_replacement,
        sort_by_source_size=(epoch <= args.curriculum),
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )
    progress = progress_bar.build_progress_bar(args, itr, epoch, no_progress_bar='simple')
    itr = itertools.islice(progress, batch_offset, None)

    # reset training meters
    for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
144
    max_update = args.max_update or math.inf
Myle Ott's avatar
Myle Ott committed
145
146
147
148
149
150
151
152
    for i, sample in enumerate(itr, start=batch_offset):
        log_output = trainer.train_step(sample)

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss']:
                continue  # these are already logged above
Myle Ott's avatar
Myle Ott committed
153
154
155
156
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
Myle Ott's avatar
Myle Ott committed
157
158
159
160
161
162
163
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # save mid-epoch checkpoints
        if i == batch_offset:
            # ignore the first mini-batch in words-per-second calculation
            trainer.get_meter('wps').reset()
Myle Ott's avatar
Myle Ott committed
164
165
166
167

        # save mid-epoch checkpoints
        num_updates = trainer.get_num_updates()
        if args.save_interval > 0 and num_updates > 0 and num_updates % args.save_interval == 0:
Myle Ott's avatar
Myle Ott committed
168
169
            save_checkpoint(trainer, args, epoch, i + 1)

Myle Ott's avatar
Myle Ott committed
170
171
172
        if num_updates >= max_update:
            break

Myle Ott's avatar
Myle Ott committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)


def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
197
    stats['oom'] = trainer.get_meter('oom').avg
Myle Ott's avatar
Myle Ott committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    return stats


def validate(args, trainer, dataset, subset, epoch):
    """Evaluate the model on the validation set and return the average loss."""

    # Initialize dataloader
    max_positions_valid = (
        trainer.get_model().max_encoder_positions(),
        trainer.get_model().max_decoder_positions(),
    )
    itr = dataset.eval_dataloader(
        subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences_valid,
        max_positions=max_positions_valid,
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
        descending=True,  # largest batch first to warm the caching allocator
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )
    progress = progress_bar.build_progress_bar(
        args, itr, epoch,
        prefix='valid on \'{}\' subset'.format(subset),
        no_progress_bar='simple'
    )

    # reset validation loss meters
    for k in ['valid_loss', 'valid_nll_loss']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    extra_meters = collections.defaultdict(lambda: AverageMeter())
    for sample in progress:
        log_output = trainer.valid_step(sample)

        # log mid-validation stats
        stats = get_valid_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss']:
                continue
            extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

    # log validation stats
    stats = get_valid_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)

    return stats['valid_loss']


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
    else:
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


def save_checkpoint(trainer, args, epoch, batch_offset, val_loss=None):
    extra_state = {
        'epoch': epoch,
        'batch_offset': batch_offset,
        'val_loss': val_loss,
    }

    if batch_offset == 0:
        if not args.no_epoch_checkpoints:
            epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
            trainer.save_checkpoint(epoch_filename, extra_state)

        assert val_loss is not None
        if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
            save_checkpoint.best = val_loss
            best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
            trainer.save_checkpoint(best_filename, extra_state)
    elif not args.no_epoch_checkpoints:
        epoch_filename = os.path.join(
            args.save_dir, 'checkpoint{}_{}.pt'.format(epoch, batch_offset))
        trainer.save_checkpoint(epoch_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


if __name__ == '__main__':
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
    main(args)